These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 12845495)

  • 1. Biorefinery.
    Ohara H
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):474-7. PubMed ID: 12845495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnological production of lactic acid integrated with fishmeal wastewater treatment by Rhizopus oryzae.
    Huang LP; Dong T; Chen JW; Li N
    Bioprocess Biosyst Eng; 2007 Mar; 30(2):135-40. PubMed ID: 17242928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Trends in polymer-grade L-lactic acid fermentation by non-food biomass].
    Yu B; Zeng Y; Jiang X; Wang L; Ma Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Apr; 29(4):411-21. PubMed ID: 23894815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a hybrid fermentation-enzymatic bioprocess for the production of ethyl lactate from dairy waste.
    Koutinas M; Menelaou M; Nicolaou EN
    Bioresour Technol; 2014 Aug; 165():343-9. PubMed ID: 24785788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale.
    Karp SG; Igashiyama AH; Siqueira PF; Carvalho JC; Vandenberghe LP; Thomaz-Soccol V; Coral J; Tholozan JL; Pandey A; Soccol CR
    Bioresour Technol; 2011 Jan; 102(2):1765-72. PubMed ID: 20933391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli.
    John RP; Nampoothiri KM; Pandey A
    Biotechnol Lett; 2006 Nov; 28(22):1823-6. PubMed ID: 16900327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora.
    Sakai K; Ezaki Y
    J Biosci Bioeng; 2006 Jun; 101(6):457-63. PubMed ID: 16935246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.
    Mimitsuka T; Sawai K; Kobayashi K; Tsukada T; Takeuchi N; Yamada K; Ogino H; Yonehara T
    J Biosci Bioeng; 2015 Jan; 119(1):65-71. PubMed ID: 25132509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lactic acid production with undefined mixed culture fermentation of potato peel waste.
    Liang S; McDonald AG; Coats ER
    Waste Manag; 2014 Nov; 34(11):2022-7. PubMed ID: 25127412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mini review: hydrogen and ethanol co-production from waste materials via microbial fermentation.
    Soo CS; Yap WS; Hon WM; Phang LY
    World J Microbiol Biotechnol; 2015 Oct; 31(10):1475-88. PubMed ID: 26185061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of lactic acid and ethanol by Rhizopus oryzae integrated with cassava pulp hydrolysis.
    Thongchul N; Navankasattusas S; Yang ST
    Bioprocess Biosyst Eng; 2010 Mar; 33(3):407-16. PubMed ID: 19533174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uses of miscanthus press juice within a green biorefinery platform.
    Boakye-Boaten NA; Xiu S; Shahbazi A; Wang L; Li R; Schimmel K
    Bioresour Technol; 2016 May; 207():285-92. PubMed ID: 26896712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives.
    John RP; Nampoothiri KM; Pandey A
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):524-34. PubMed ID: 17225102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biorefinery of instant noodle waste to biofuels.
    Yang X; Lee SJ; Yoo HY; Choi HS; Park C; Kim SW
    Bioresour Technol; 2014 May; 159():17-23. PubMed ID: 24632436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Citrus Peel Waste Biorefinery for Ethanol and Methane Production.
    Patsalou M; Samanides CG; Protopapa E; Stavrinou S; Vyrides I; Koutinas M
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31277372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering strategies aimed at control of acidification rate of lactic acid bacteria.
    Martinussen J; Solem C; Holm AK; Jensen PR
    Curr Opin Biotechnol; 2013 Apr; 24(2):124-9. PubMed ID: 23266099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature or petrochemistry?-biologically degradable materials.
    Mecking S
    Angew Chem Int Ed Engl; 2004 Feb; 43(9):1078-85. PubMed ID: 14983440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream.
    Oliveira RA; Schneider R; Lunelli BH; Rossell CEV; Filho RM; Venus J
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32365990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Valorization of sugar-to-ethanol process waste vinasse: A novel biorefinery approach using edible ascomycetes filamentous fungi.
    Nair RB; Taherzadeh MJ
    Bioresour Technol; 2016 Dec; 221():469-476. PubMed ID: 27668880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions.
    Rodríguez Couto S
    Biotechnol J; 2008 Jul; 3(7):859-70. PubMed ID: 18543242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.