These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 12845510)

  • 1. Instabilities during antiphase bimanual movements: are ipsilateral pathways involved?
    Kagerer FA; Summers JJ; Semjen A
    Exp Brain Res; 2003 Aug; 151(4):489-500. PubMed ID: 12845510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of transcranial magnetic stimulation on bimanual movements.
    Chen JT; Lin YY; Shan DE; Wu ZA; Hallett M; Liao KK
    J Neurophysiol; 2005 Jan; 93(1):53-63. PubMed ID: 15331622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of motor overflow on bimanual asymmetric force coordination.
    Cunningham DA; Roelle SM; Allexandre D; Potter-Baker KA; Sankarasubramanian V; Knutson JS; Yue GH; Machado AG; Plow EB
    Exp Brain Res; 2017 Apr; 235(4):1097-1105. PubMed ID: 28091708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visual feedback alters the variations in corticospinal excitability that arise from rhythmic movements of the opposite limb.
    Carson RG; Welsh TN; Pamblanco-Valero MA
    Exp Brain Res; 2005 Mar; 161(3):325-34. PubMed ID: 15517219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performing two different actions simultaneously: The critical role of interhemispheric interactions during the preparation of bimanual movement.
    Fujiyama H; Van Soom J; Rens G; Cuypers K; Heise KF; Levin O; Swinnen SP
    Cortex; 2016 Apr; 77():141-154. PubMed ID: 26963084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resource-demanding versus cost-effective bimanual interaction in the brain.
    Aramaki Y; Osu R; Sadato N
    Exp Brain Res; 2010 Jun; 203(2):407-18. PubMed ID: 20419370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateralization of unimanual and bimanual motor imagery.
    Stinear CM; Fleming MK; Byblow WD
    Brain Res; 2006 Jun; 1095(1):139-47. PubMed ID: 16713588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slowing fastest finger movements of the dominant hand with low-frequency rTMS of the hand area of the primary motor cortex.
    Jäncke L; Steinmetz H; Benilow S; Ziemann U
    Exp Brain Res; 2004 Mar; 155(2):196-203. PubMed ID: 14648014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary motor cortex excitability is modulated with bimanual training.
    Neva JL; Legon W; Staines WR
    Neurosci Lett; 2012 Apr; 514(2):147-51. PubMed ID: 22405809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitability of the ipsilateral motor cortex during phasic voluntary hand movement.
    Sohn YH; Jung HY; Kaelin-Lang A; Hallett M
    Exp Brain Res; 2003 Jan; 148(2):176-85. PubMed ID: 12520405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Difference of Neural Networks between Bimanual Antiphase and In-Phase Upper Limb Movements: A Preliminary Functional Magnetic Resonance Imaging Study.
    Lin Q; Li H; Mao YR; Lo WL; Zhao JL; Chen L; Leng Y; Huang DF; Li L
    Behav Neurol; 2017; 2017():8041962. PubMed ID: 28701822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutaneous inputs can activate the ipsilateral primary motor cortex during bimanual sensory-driven movements in humans.
    Shibuya S; Ohki Y
    J Neurophysiol; 2004 Dec; 92(6):3200-9. PubMed ID: 15115786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mirror, mirror on the wall: viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability.
    Garry MI; Loftus A; Summers JJ
    Exp Brain Res; 2005 May; 163(1):118-22. PubMed ID: 15754176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of transcranial direct current stimulation on antiphase and inphase motor tasks: A pilot study.
    Ryan K; Schranz AL; Duggal N; Bartha R
    Behav Brain Res; 2019 Jul; 366():13-18. PubMed ID: 30851316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different effects of fatiguing exercise on corticospinal and transcallosal excitability in human hand area motor cortex.
    Edgley SA; Winter AP
    Exp Brain Res; 2004 Dec; 159(4):530-6. PubMed ID: 15249989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermanual Differences in movement-related interhemispheric inhibition.
    Duque J; Murase N; Celnik P; Hummel F; Harris-Love M; Mazzocchio R; Olivier E; Cohen LG
    J Cogn Neurosci; 2007 Feb; 19(2):204-13. PubMed ID: 17280510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-frequency repetitive TMS plus anodal transcranial DCS prevents transient decline in bimanual movement induced by contralesional inhibitory rTMS after stroke.
    Takeuchi N; Tada T; Matsuo Y; Ikoma K
    Neurorehabil Neural Repair; 2012 Oct; 26(8):988-98. PubMed ID: 22412170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of area MT in bimanual finger movements in left-handers: an fMRI study.
    Müller K; Kleiser R; Mechsner F; Seitz RJ
    Eur J Neurosci; 2011 Oct; 34(8):1301-9. PubMed ID: 21933287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ipsilateral corticospinal projections do not predict congenital mirror movements: a case report.
    Verstynen T; Spencer R; Stinear CM; Konkle T; Diedrichsen J; Byblow WD; Ivry RB
    Neuropsychologia; 2007 Mar; 45(4):844-52. PubMed ID: 17023008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unified nature of bimanual movements revealed by separating the preparation of each arm.
    Blinch J; Franks IM; Carpenter MG; Chua R
    Exp Brain Res; 2015 Jun; 233(6):1931-44. PubMed ID: 25850406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.