BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12845598)

  • 1. Gliding movement in Peranema trichophorum is powered by flagellar surface motility.
    Saito A; Suetomo Y; Arikawa M; Omura G; Khan SM; Kakuta S; Suzaki E; Kataoka K; Suzaki T
    Cell Motil Cytoskeleton; 2003 Aug; 55(4):244-53. PubMed ID: 12845598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface properties of the euglenoid flagellum.
    Bouck GB; Rogalski AA
    Symp Soc Exp Biol; 1982; 35():381-97. PubMed ID: 6820858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of gliding motility in Flexibacter polymorphus.
    Ridgway HF; Lewin RA
    Cell Motil Cytoskeleton; 1988; 11(1):46-63. PubMed ID: 2905209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a novel Chlamydomonas mutant to demonstrate that flagellar glycoprotein movements are necessary for the expression of gliding motility.
    Bloodgood RA; Salomonsky NL
    Cell Motil Cytoskeleton; 1989; 13(1):1-8. PubMed ID: 2731235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivation of euglenoid movement and flagellar beating in detergent-extracted cells of Astasia longa: different mechanisms of force generation are involved.
    Suzaki T; Williamson RE
    J Cell Sci; 1986 Feb; 80():75-89. PubMed ID: 3636343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observations on the organelles, movement, and feeding of Peranema trichophorum (Ehrb.) Stein.
    Chang SL
    Trans Am Microsc Soc; 1966 Jan; 85(1):29-45. PubMed ID: 5907534
    [No Abstract]   [Full Text] [Related]  

  • 7. Release of Sticky Glycoproteins from Chlamydomonas Flagella During Microsphere Translocation on the Surface Membrane.
    Kamiya R; Shiba K; Inaba K; Kato-Minoura T
    Zoolog Sci; 2018 Aug; 35(4):299-305. PubMed ID: 30079834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of suramin on trypomastigote forms of Trypanosoma cruzi: changes on cell motility and on the ultrastructure of the flagellum-cell body attachment region.
    Bisaggio DF; Campanati L; Pinto RC; Souto-PadrĂ³n T
    Acta Trop; 2006 May; 98(2):162-75. PubMed ID: 16716244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei.
    Absalon S; Blisnick T; Bonhivers M; Kohl L; Cayet N; Toutirais G; Buisson J; Robinson D; Bastin P
    J Cell Sci; 2008 Nov; 121(Pt 22):3704-16. PubMed ID: 18940910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser trap measurements of flagellar membrane motility.
    Guilford WH; Bloodgood RA
    Methods Enzymol; 2013; 525():85-107. PubMed ID: 23522466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of flagellar bending in hamster spermatozoa: characterization of an effective stroke.
    Kinukawa M; Ohmuro J; Baba SA; Murashige S; Okuno M; Nagata M; Aoki F
    Biol Reprod; 2005 Dec; 73(6):1269-74. PubMed ID: 16107609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM; Kabututu ZP; Hill KL
    J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of osmolality on sperm morphology, motility and flagellar wave parameters in Northern pike (Esox lucius L.).
    Alavi SM; Rodina M; Viveiros AT; Cosson J; Gela D; Boryshpolets S; Linhart O
    Theriogenology; 2009 Jul; 72(1):32-43. PubMed ID: 19269024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional roles of the transverse and longitudinal flagella in the swimming motility of Prorocentrum minimum (Dinophyceae).
    Miyasaka I; Nanba K; Furuya K; Nimura Y; Azuma A
    J Exp Biol; 2004 Aug; 207(Pt 17):3055-66. PubMed ID: 15277560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specializations in the flagellar membrane to Tritrichomonas foetus.
    Benchimol M; Elias CA; de Souza W
    J Parasitol; 1981 Apr; 67(2):174-8. PubMed ID: 7241276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flagellar surface motility: gliding and microsphere movements.
    Bloodgood RA
    Methods Cell Biol; 1995; 47():273-9. PubMed ID: 7476499
    [No Abstract]   [Full Text] [Related]  

  • 17. Flagellar and ciliary beating in trypanosome motility.
    Gadelha C; Wickstead B; Gull K
    Cell Motil Cytoskeleton; 2007 Aug; 64(8):629-43. PubMed ID: 17549738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular and molecular mechanics of gliding locomotion in eukaryotes.
    Heintzelman MB
    Int Rev Cytol; 2006; 251():79-129. PubMed ID: 16939778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypanosomes and mammalian sperm: one of a kind?
    Oberholzer M; Bregy P; Marti G; Minca M; Peier M; Seebeck T
    Trends Parasitol; 2007 Feb; 23(2):71-7. PubMed ID: 17174157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The motor activity of mammalian axonemal dynein studied in situ on doublet microtubules.
    Lorch DP; Lindemann CB; Hunt AJ
    Cell Motil Cytoskeleton; 2008 Jun; 65(6):487-94. PubMed ID: 18421707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.