BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 12845708)

  • 1. Lens structure in MIP-deficient mice.
    Al-Ghoul KJ; Kirk T; Kuszak AJ; Zoltoski RK; Shiels A; Kuszak JR
    Anat Rec A Discov Mol Cell Evol Biol; 2003 Aug; 273(2):714-30. PubMed ID: 12845708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization.
    Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK
    Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in lenses of mice lacking the gap junction protein connexin43.
    Gao Y; Spray DC
    Invest Ophthalmol Vis Sci; 1998 Jun; 39(7):1198-209. PubMed ID: 9620080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unique and analogous functions of aquaporin 0 for fiber cell architecture and ocular lens transparency.
    Kumari SS; Eswaramoorthy S; Mathias RT; Varadaraj K
    Biochim Biophys Acta; 2011 Sep; 1812(9):1089-97. PubMed ID: 21511033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development.
    Yu XS; Jiang JX
    J Cell Sci; 2004 Feb; 117(Pt 6):871-80. PubMed ID: 14762116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling of secondary fiber development and growth: I. Nonprimate lenses.
    Kuszak JR; Mazurkiewicz M; Zoltoski R
    Mol Vis; 2006 Apr; 12():251-70. PubMed ID: 16617293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and organization of posterior fiber ends during migration.
    Al-Ghoul KJ; Kuszak JR; Lu JY; Owens MJ
    Mol Vis; 2003 Apr; 9():119-28. PubMed ID: 12707642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prenatal lens development in connexin43 and connexin50 double knockout mice.
    White TW; Sellitto C; Paul DL; Goodenough DA
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2916-23. PubMed ID: 11687537
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interrelationship of lens anatomy and optical quality. I. Non-primate lenses.
    Sivak JG; Herbert KL; Peterson KL; Kuszak JR
    Exp Eye Res; 1994 Nov; 59(5):505-20. PubMed ID: 9492753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sutures of the crystalline lens: a review.
    Kuszak JR; Bertram BA; Macsai MS; Rae JL
    Scan Electron Microsc; 1984; (Pt 3):1369-78. PubMed ID: 6390664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of MIP 26 in nuclear fiber cells from aged normal and age-related nuclear cataractous human lenses.
    Boyle DL; Takemoto LJ
    Exp Eye Res; 1999 Jan; 68(1):41-9. PubMed ID: 9986740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrastructure and acid phosphatase activity in hereditary cataracts of deer mice.
    Feeney-Burns L; Burns RP; Anderson RS
    Invest Ophthalmol Vis Sci; 1980 Jul; 19(7):777-88. PubMed ID: 7390724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane alterations during cataract development in the Nakano mouse lens.
    Tanaka M; Russell P; Smith S; Uga S; Kuwabara T; Kinoshita JH
    Invest Ophthalmol Vis Sci; 1980 Jun; 19(6):619-29. PubMed ID: 7380622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakdown of interlocking domains may contribute to formation of membranous globules and lens opacity in ephrin-A5(-/-) mice.
    Biswas S; Son A; Yu Q; Zhou R; Lo WK
    Exp Eye Res; 2016 Apr; 145():130-139. PubMed ID: 26643403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap junction structures and distribution patterns of immunoreactive connexins 46 and 50 in lens regrowths of Rhesus monkeys.
    Lo WK; Shaw AP; Takemoto LJ; Grossniklaus HE; Tigges M
    Exp Eye Res; 1996 Feb; 62(2):171-80. PubMed ID: 8698077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 76-bp deletion in the Mip gene causes autosomal dominant cataract in Hfi mice.
    Sidjanin DJ; Parker-Wilson DM; Neuhäuser-Klaus A; Pretsch W; Favor J; Deen PM; Ohtaka-Maruyama C; Lu Y; Bragin A; Skach WR; Chepelinsky AB; Grimes PA; Stambolian DE
    Genomics; 2001 Jun; 74(3):313-9. PubMed ID: 11414759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of posterior subcapsular cataracts in the Royal College of Surgeons (RCS) rats.
    Al-ghoul KJ; Novak LA; Kuszak JR
    Exp Eye Res; 1998 Aug; 67(2):163-77. PubMed ID: 9733583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massive formation of square array junctions dramatically alters cell shape but does not cause lens opacity in the cav1-KO mice.
    Biswas SK; Brako L; Lo WK
    Exp Eye Res; 2014 Aug; 125():9-19. PubMed ID: 24877741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The internalization of posterior subcapsular cataracts (PSCs) in Royal College of Surgeons (RCS) rats. II. The inter-relationship of optical quality and structure as a function of age.
    Kuszak JR; Al-Ghoul KJ; Novak LA; Peterson KL; Herbert KL; Sivak JG
    Mol Vis; 1999 May; 5():7. PubMed ID: 10329770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epithelial organization of the mammalian lens.
    Zampighi GA; Eskandari S; Kreman M
    Exp Eye Res; 2000 Oct; 71(4):415-35. PubMed ID: 10995562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.