These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
496 related articles for article (PubMed ID: 12846314)
41. Pest management research in the Agricultural Research Service of the United States Department of Agriculture. Ragsdale NN Pest Manag Sci; 2003; 59(6-7):597-9. PubMed ID: 12846307 [No Abstract] [Full Text] [Related]
42. United States Department of Agriculture-Agricultural Research Service research in application technology for pest management. Smith LA; Thomson SJ Pest Manag Sci; 2003; 59(6-7):699-707. PubMed ID: 12846320 [TBL] [Abstract][Full Text] [Related]
43. Biological Control with Zang LS; Wang S; Zhang F; Desneux N Annu Rev Entomol; 2021 Jan; 66():463-484. PubMed ID: 32976724 [No Abstract] [Full Text] [Related]
44. A Moveable Feast: Insects Moving at the Forest-Crop Interface Are Affected by Crop Phenology and the Amount of Forest in the Landscape. González E; Salvo A; Defagó MT; Valladares G PLoS One; 2016; 11(7):e0158836. PubMed ID: 27383505 [TBL] [Abstract][Full Text] [Related]
45. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Biondi A; Desneux N; Siscaro G; Zappalà L Chemosphere; 2012 May; 87(7):803-12. PubMed ID: 22342338 [TBL] [Abstract][Full Text] [Related]
46. Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Tembo Y; Mkindi AG; Mkenda PA; Mpumi N; Mwanauta R; Stevenson PC; Ndakidemi PA; Belmain SR Front Plant Sci; 2018; 9():1425. PubMed ID: 30323823 [TBL] [Abstract][Full Text] [Related]
47. Natural enemy interactions constrain pest control in complex agricultural landscapes. Martin EA; Reineking B; Seo B; Steffan-Dewenter I Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5534-9. PubMed ID: 23513216 [TBL] [Abstract][Full Text] [Related]
48. Knowing your enemies: Integrating molecular and ecological methods to assess the impact of arthropod predators on crop pests. Furlong MJ Insect Sci; 2015 Feb; 22(1):6-19. PubMed ID: 25081301 [TBL] [Abstract][Full Text] [Related]
49. Insect chemical ecology research in the United States Department of Agriculture-Agricultural Research Service. Aldrich JR; Bartelt RJ; Dickens JC; Knight AL; Light DM; Tumlinson JH Pest Manag Sci; 2003; 59(6-7):777-87. PubMed ID: 12846329 [TBL] [Abstract][Full Text] [Related]
50. United States Department of Agriculture-Agricultural Research Service research on natural products for pest management. Duke SO; Baerson SR; Dayan FE; Rimando AM; Scheffler BE; Tellez MR; Wedge DE; Schrader KK; Akey DH; Arthur FH; De Lucca AJ; Gibson DM; Harrison HF; Peterson JK; Gealy DR; Tworkoski T; Wilson CL; Morris JB Pest Manag Sci; 2003; 59(6-7):708-17. PubMed ID: 12846321 [TBL] [Abstract][Full Text] [Related]
51. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape. Zhao Z; Shi P; Men X; Ouyang F; Ge F Sci China Life Sci; 2013 Aug; 56(8):758-66. PubMed ID: 23838809 [TBL] [Abstract][Full Text] [Related]
52. Establishing next-generation pest control services in rice fields: eco-agriculture. Ali MP; Bari MN; Haque SS; Kabir MMM; Afrin S; Nowrin F; Islam MS; Landis DA Sci Rep; 2019 Jul; 9(1):10180. PubMed ID: 31308440 [TBL] [Abstract][Full Text] [Related]
53. Economic value of biological control in integrated pest management of managed plant systems. Naranjo SE; Ellsworth PC; Frisvold GB Annu Rev Entomol; 2015 Jan; 60():621-45. PubMed ID: 25423598 [TBL] [Abstract][Full Text] [Related]
54. Species traits elucidate crop pest response to landscape composition: a global analysis. Tamburini G; Santoiemma G; E O'Rourke M; Bommarco R; Chaplin-Kramer R; Dainese M; Karp DS; Kim TN; Martin EA; Petersen M; Marini L Proc Biol Sci; 2020 Oct; 287(1937):20202116. PubMed ID: 33109015 [TBL] [Abstract][Full Text] [Related]
55. Landscape simplification reduces classical biological control and crop yield. Grab H; Danforth B; Poveda K; Loeb G Ecol Appl; 2018 Mar; 28(2):348-355. PubMed ID: 29345735 [TBL] [Abstract][Full Text] [Related]
56. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control. Lopes T; Hatt S; Xu Q; Chen J; Liu Y; Francis F Pest Manag Sci; 2016 Dec; 72(12):2193-2202. PubMed ID: 27271821 [TBL] [Abstract][Full Text] [Related]
57. Graph and circuit theory connectivity models of conservation biological control agents. Koh I; Rowe HI; Holland JD Ecol Appl; 2013 Oct; 23(7):1554-73. PubMed ID: 24261040 [TBL] [Abstract][Full Text] [Related]
58. Exploring the impact of cover crops in integrated pest management: pest and natural enemies population dynamics in no-tillage cotton production. de Araújo WA; Fernandes MG; Degrande PE; Salustino ADS; Neto DFC; Malaquias JB Bull Entomol Res; 2024 Aug; 114(4):581-590. PubMed ID: 39308244 [TBL] [Abstract][Full Text] [Related]
59. Are exotic natural enemies an effective way of controlling invasive plants? Thomas MB; Reid AM Trends Ecol Evol; 2007 Sep; 22(9):447-53. PubMed ID: 17363106 [TBL] [Abstract][Full Text] [Related]
60. Trophic cascades in agricultural landscapes: indirect effects of landscape composition on crop yield. Liere H; Kim TN; Werling BP; Meehan TD; Landis DA; Gratton C Ecol Appl; 2015 Apr; 25(3):652-61. PubMed ID: 26214911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]