These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 12846316)

  • 41. Cropping Practices and Soil Properties Associated with Plant-Parasitic Nematodes in Corn Fields in Ohio.
    Simon ACM; Lopez-Nicora HD; Niblack TL; Dayton EA; Tomashefski D; Paul PA
    Plant Dis; 2018 Dec; 102(12):2519-2530. PubMed ID: 30336073
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Beneficial bacteria of agricultural importance.
    Babalola OO
    Biotechnol Lett; 2010 Nov; 32(11):1559-70. PubMed ID: 20635120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cuticle surface coat of plant-parasitic nematodes.
    Davies KG; Curtis RH
    Annu Rev Phytopathol; 2011; 49():135-56. PubMed ID: 21568702
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Possible Biotechnological Use of Edible Mushroom Bioproducts for Controlling Plant and Animal Parasitic Nematodes.
    Castañeda-Ramírez GS; Torres-Acosta JFJ; Sánchez JE; Mendoza-de-Gives P; González-Cortázar M; Zamilpa A; Al-Ani LKT; Sandoval-Castro C; de Freitas Soares FE; Aguilar-Marcelino L
    Biomed Res Int; 2020; 2020():6078917. PubMed ID: 32685507
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rhizosphere Interactions and the Exploitation of Microbial Agents for the Biological Control of Plant-Parasitic Nematodes.
    Kerry BR
    Annu Rev Phytopathol; 2000 Sep; 38():423-441. PubMed ID: 11701849
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Potential of entomopathogenic nematodes for biological control of Acalymma vittatum (Coleoptera: Chrysomelidae) in cucumbers grown in conventional and organic soil management systems.
    Ellers-Kirk CD; Fleischer SJ; Snyder RH; Lynch JP
    J Econ Entomol; 2000 Jun; 93(3):605-12. PubMed ID: 10902305
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biological Control of Plant-Parasitic Nematodes by Filamentous Fungi Inducers of Resistance:
    Poveda J; Abril-Urias P; Escobar C
    Front Microbiol; 2020; 11():992. PubMed ID: 32523567
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nematode neuropeptides as transgenic nematicides.
    Warnock ND; Wilson L; Patten C; Fleming CC; Maule AG; Dalzell JJ
    PLoS Pathog; 2017 Feb; 13(2):e1006237. PubMed ID: 28241060
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Actinomycetes are a natural resource for sustainable pest control and safeguarding agriculture.
    Diab MK; Mead HM; Ahmad Khedr MM; Abu-Elsaoud AM; El-Shatoury SA
    Arch Microbiol; 2024 May; 206(6):268. PubMed ID: 38762847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Capability of the nematode-trapping fungus Duddingtonia flagrans to reduce infective larvae of gastrointestinal nematodes in goat feces in the southeastern United States: dose titration and dose time interval studies.
    Terrill TH; Larsen M; Samples O; Husted S; Miller JE; Kaplan RM; Gelaye S
    Vet Parasitol; 2004 Apr; 120(4):285-96. PubMed ID: 15063939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Systemic resistance induced by biocontrol agents in plants and its biochemical and cytological mechanisms].
    Liu XG; Gao KX; Kang ZS; He BL
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1861-8. PubMed ID: 17974258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant-parasitic nematode host, Meloidogyne spp.
    Davies KG
    Adv Parasitol; 2009; 68():211-45. PubMed ID: 19289196
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tropical soil microflora of spice-based cropping systems as potential antagonists of root-knot nematodes.
    Eapen SJ; Beena B; Ramana KV
    J Invertebr Pathol; 2005 Mar; 88(3):218-25. PubMed ID: 15955340
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Biological control of helminths in grazing animals using nematophagous fungi].
    Hertzberg H; Larsen M; Maurer V
    Berl Munch Tierarztl Wochenschr; 2002; 115(7-8):278-85. PubMed ID: 12174725
    [TBL] [Abstract][Full Text] [Related]  

  • 55. United States Department of Agriculture-Agricultural Research Service research on pest biology: weeds.
    Forcella F
    Pest Manag Sci; 2003; 59(6-7):754-63. PubMed ID: 12846326
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Research progress in root rot diseases of Chinese herbal medicine and control strategy by antagonistic microorganisms].
    Gao F; Ren XX; Wang ML; Qin XM
    Zhongguo Zhong Yao Za Zhi; 2015 Nov; 40(21):4122-6. PubMed ID: 27071243
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Emerging microbial biocontrol strategies for plant pathogens.
    Syed Ab Rahman SF; Singh E; Pieterse CMJ; Schenk PM
    Plant Sci; 2018 Feb; 267():102-111. PubMed ID: 29362088
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Advances in the biological control of phytoparasitic nematodes via the use of nematophagous fungi.
    Flores Francisco BG; Ponce IM; Plascencia Espinosa MÁ; Mendieta Moctezuma A; López Y López VE
    World J Microbiol Biotechnol; 2021 Sep; 37(10):180. PubMed ID: 34562178
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Ditylenchus destructor genome provides new insights into the evolution of plant parasitic nematodes.
    Zheng J; Peng D; Chen L; Liu H; Chen F; Xu M; Ju S; Ruan L; Sun M
    Proc Biol Sci; 2016 Jul; 283(1835):. PubMed ID: 27466450
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes.
    Smant G; Helder J; Goverse A
    Plant J; 2018 Feb; 93(4):686-702. PubMed ID: 29277939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.