BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 12846808)

  • 1. The rise and fall of long-lived humoral immunity: terminal differentiation of plasma cells in health and disease.
    O'Connor BP; Gleeson MW; Noelle RJ; Erickson LD
    Immunol Rev; 2003 Aug; 194():61-76. PubMed ID: 12846808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal dynamics and genomic programming of plasma cell fates.
    Vijay GKM; Zhou M; Thakkar K; Rothrauff A; Chawla AS; Chen D; Lau LC; Habib P; Chetal K; Chhibbar P; Fan J; Das J; Joglekar A; Borghesi L; Salomonis N; Xu H; Singh H
    Res Sq; 2023 Sep; ():. PubMed ID: 37720050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the relationship between persistent antibody secretion and metabolic programming - A question for single-cell analysis.
    Bucheli OTM; Eyer K
    Immunol Lett; 2023 Aug; 260():35-43. PubMed ID: 37315849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal Tracking of Plasma Cells
    Borbet TC; Zaldaña K; Zavitsanou AM; Hines MJ; Bajwa S; Morrison T; Boehringer T; Hallisey VM; Cadwell K; Koralov SB
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affinity alone does not drive long-lived plasma cell differentiation.
    McDougal CE; Pepper M
    Immunol Cell Biol; 2024 May; ():. PubMed ID: 38715314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting plasma cell retention and loss over a lifetime.
    Robinson MJ; Tarlinton DM
    Immunity; 2024 Mar; 57(3):408-410. PubMed ID: 38479357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zinc Oxide Nanoparticles Trigger Autophagy in the Human Multiple Myeloma Cell Line RPMI8226: an In Vitro Study.
    Li Z; Yin X; Lyu C; Wang J; Liu K; Cui S; Ding S; Wang Y; Wang J; Guo D; Xu R
    Biol Trace Elem Res; 2024 Mar; 202(3):913-926. PubMed ID: 37432567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell technologies in multiple myeloma: new insights into disease pathogenesis and translational implications.
    Chen M; Jiang J; Hou J
    Biomark Res; 2023 May; 11(1):55. PubMed ID: 37259170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adoptive Immunotherapy and High-Risk Myeloma.
    Duane C; O'Dwyer M; Glavey S
    Cancers (Basel); 2023 May; 15(9):. PubMed ID: 37174099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPR176 Is a Biomarker for Predicting Prognosis and Immune Infiltration in Stomach Adenocarcinoma.
    Ni L; Chen S; Liu J; Li H; Zhao H; Zheng C; Zhang Y; Huang H; Huang J; Wang B; Lin C
    Mediators Inflamm; 2023; 2023():7123568. PubMed ID: 37124060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immune dysregulation in multiple myeloma: the current and future role of cell-based immunotherapy.
    Russell BM; Avigan DE
    Int J Hematol; 2023 May; 117(5):652-659. PubMed ID: 36964840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Ultrastructural Analysis of the Multiple Myeloma Cell Niche and a Patient-Specific Model of Plasma Cell Dysfunction.
    Harmon KA; Roman S; Lancaster HD; Chowhury S; Cull E; Goodwin RL; Arce S; Fanning S
    Microsc Microanal; 2022 Feb; 28(1):254-264. PubMed ID: 34881690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer immunoediting and immune dysregulation in multiple myeloma.
    Nakamura K; Smyth MJ; Martinet L
    Blood; 2020 Dec; 136(24):2731-2740. PubMed ID: 32645135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteoclast Immunosuppressive Effects in Multiple Myeloma: Role of Programmed Cell Death Ligand 1.
    Tai YT; Cho SF; Anderson KC
    Front Immunol; 2018; 9():1822. PubMed ID: 30147691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD229 is expressed on the surface of plasma cells carrying an aberrant phenotype and chemotherapy-resistant precursor cells in multiple myeloma.
    Yousef S; Kovacsovics-Bankowski M; Salama ME; Bhardwaj N; Steinbach M; Langemo A; Kovacsovics T; Marvin J; Binder M; Panse J; Kröger N; Luetkens T; Atanackovic D
    Hum Vaccin Immunother; 2015; 11(7):1606-11. PubMed ID: 26001047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inside-out assembly of viral antigens for the enhanced vaccination.
    Cao F; Peng S; An Y; Xu K; Zheng T; Dai L; Ogino K; Ngai T; Xia Y; Ma G
    Signal Transduct Target Ther; 2023 May; 8(1):189. PubMed ID: 37221173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autophagy and Its Lineage-Specific Roles in the Hematopoietic System.
    Hasan KMM; Haque MA
    Oxid Med Cell Longev; 2023; 2023():8257217. PubMed ID: 37180758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Update on Protective Effectiveness of Immune Responses After Recovery From COVID-19.
    Soleimanian S; Alyasin S; Sepahi N; Ghahramani Z; Kanannejad Z; Yaghobi R; Karimi MH
    Front Immunol; 2022; 13():884879. PubMed ID: 35669767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of Interleukin-33 in Recombinant Rabies Virus Enhances Innate and Humoral Immune Responses through Activation of Dendritic Cell-Germinal Center Reactions.
    Mi Z; Zhao L; Sun M; Gao T; Wang Y; Sui B; Li Y
    Vaccines (Basel); 2021 Dec; 10(1):. PubMed ID: 35062695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics.
    Kumar V
    Int Immunopharmacol; 2020 Nov; 88():106980. PubMed ID: 33182073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.