These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 1284681)
1. Crystallization of proton channel peptides. Lovejoy B; Akerfeldt KS; DeGrado WF; Eisenberg D Protein Sci; 1992 Aug; 1(8):1073-7. PubMed ID: 1284681 [TBL] [Abstract][Full Text] [Related]
2. Effects of branched beta-carbon dehydro-residues on peptide conformations: syntheses, crystal structures and molecular conformations of two tetrapeptides: (a) N-(benzyloxycarbonyl)-DeltaVal-Leu-DeltaPhe-Leu-OCH3 and (b) N-(benzyloxycarbonyl)-DeltaIle-Ala-DeltaPhe-Ala-OCH3. Goel VK; Somvanshi RK; Dey S; Singh TP J Pept Res; 2005 Aug; 66(2):68-74. PubMed ID: 16000120 [TBL] [Abstract][Full Text] [Related]
3. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194 [TBL] [Abstract][Full Text] [Related]
4. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers. Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922 [TBL] [Abstract][Full Text] [Related]
5. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
6. Helix-forming tendencies of amino acids depend on their sequence contexts: tripeptides AFG and FAG show incipient beta-bulge formation in their crystal structures. Parthasarathy R; Go K; Chaturvedi S Biopolymers; 1993 Jan; 33(1):163-71. PubMed ID: 8427933 [TBL] [Abstract][Full Text] [Related]
7. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8. Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527 [TBL] [Abstract][Full Text] [Related]
8. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
9. Crystallization and preliminary crystallographic analysis of a tetrameric isolectin from Vicia villosa, specific for the Tn antigen. Eiselé JL; Tello D; Osinaga E; Roseto A; Alzari PM J Mol Biol; 1993 Mar; 230(2):670-2. PubMed ID: 8464073 [TBL] [Abstract][Full Text] [Related]
10. Structure and assembly of designed beta-hairpin peptides in crystals as models for beta-sheet aggregation. Aravinda S; Harini VV; Shamala N; Das C; Balaram P Biochemistry; 2004 Feb; 43(7):1832-46. PubMed ID: 14967024 [TBL] [Abstract][Full Text] [Related]
11. Conformationally constrained alpha-helical peptide models for protein ion channels. DeGrado WF; Lear JD Biopolymers; 1990 Jan; 29(1):205-13. PubMed ID: 1691664 [TBL] [Abstract][Full Text] [Related]
12. Crystallization, molecular replacement solution, and refinement of tetrameric beta-amylase from sweet potato. Cheong CG; Eom SH; Chang C; Shin DH; Song HK; Min K; Moon JH; Kim KK; Hwang KY; Suh SW Proteins; 1995 Feb; 21(2):105-17. PubMed ID: 7777485 [TBL] [Abstract][Full Text] [Related]
13. Lactam bridge stabilization of alpha-helices: the role of hydrophobicity in controlling dimeric versus monomeric alpha-helices. Houston ME; Campbell AP; Lix B; Kay CM; Sykes BD; Hodges RS Biochemistry; 1996 Aug; 35(31):10041-50. PubMed ID: 8756466 [TBL] [Abstract][Full Text] [Related]
14. The design, synthesis, and crystallization of an alpha-helical peptide. Eisenberg D; Wilcox W; Eshita SM; Pryciak PM; Ho SP; DeGrado WF Proteins; 1986 Sep; 1(1):16-22. PubMed ID: 3449847 [TBL] [Abstract][Full Text] [Related]
15. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides. Zhang L; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(25):8102-11. PubMed ID: 10387056 [TBL] [Abstract][Full Text] [Related]
16. Conformational and orientation studies of artificial ion channels incorporated into lipid bilayers. Biron E; Voyer N; Meillon JC; Cormier ME; Auger M Biopolymers; 2000; 55(5):364-72. PubMed ID: 11241211 [TBL] [Abstract][Full Text] [Related]
17. Molecular organization in striated domains induced by transmembrane alpha-helical peptides in dipalmitoyl phosphatidylcholine bilayers. Sparr E; Ganchev DN; Snel MM; Ridder AN; Kroon-Batenburg LM; Chupin V; Rijkers DT; Killian JA; de Kruijff B Biochemistry; 2005 Jan; 44(1):2-10. PubMed ID: 15628840 [TBL] [Abstract][Full Text] [Related]
18. Structural role of bacterioruberin in the trimeric structure of archaerhodopsin-2. Yoshimura K; Kouyama T J Mol Biol; 2008 Feb; 375(5):1267-81. PubMed ID: 18082767 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the tetramerization domain of the Shaker potassium channel. Kreusch A; Pfaffinger PJ; Stevens CF; Choe S Nature; 1998 Apr; 392(6679):945-8. PubMed ID: 9582078 [TBL] [Abstract][Full Text] [Related]
20. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]