These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 12846935)

  • 1. Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases.
    Ritchie MD; White BC; Parker JS; Hahn LW; Moore JH
    BMC Bioinformatics; 2003 Jul; 4():28. PubMed ID: 12846935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of approaches for machine-learning optimization of neural networks for detecting gene-gene interactions in genetic epidemiology.
    Motsinger-Reif AA; Dudek SM; Hahn LW; Ritchie MD
    Genet Epidemiol; 2008 May; 32(4):325-40. PubMed ID: 18265411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.
    Koo CL; Liew MJ; Mohamad MS; Salleh AH
    Biomed Res Int; 2013; 2013():432375. PubMed ID: 24228248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPNN: power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease.
    Motsinger AA; Lee SL; Mellick G; Ritchie MD
    BMC Bioinformatics; 2006 Jan; 7():39. PubMed ID: 16436204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction models in the design of neural network based ECG classifiers: a neural network and genetic programming approach.
    Nugent CD; Lopez JA; Smith AE; Black ND
    BMC Med Inform Decis Mak; 2002; 2():1. PubMed ID: 11846893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling personal genomics with an explicit test of epistasis.
    Greene CS; Himmelstein DS; Nelson HH; Kelsey KT; Williams SM; Andrew AS; Karagas MR; Moore JH
    Pac Symp Biocomput; 2010; ():327-36. PubMed ID: 19908385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template learning of cellular neural network using genetic programming.
    Radwan E; Tazaki E
    Int J Neural Syst; 2004 Aug; 14(4):247-56. PubMed ID: 15372702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring network interactions using recurrent neural networks and swarm intelligence.
    Ressom HW; Zhang Y; Xuan J; Wang Y; Clarke R
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4241-4. PubMed ID: 17946231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial intelligence to deep learning: machine intelligence approach for drug discovery.
    Gupta R; Srivastava D; Sahu M; Tiwari S; Ambasta RK; Kumar P
    Mol Divers; 2021 Aug; 25(3):1315-1360. PubMed ID: 33844136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning in genome-wide association studies.
    Szymczak S; Biernacka JM; Cordell HJ; González-Recio O; König IR; Zhang H; Sun YV
    Genet Epidemiol; 2009; 33 Suppl 1():S51-7. PubMed ID: 19924717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detecting Susceptibility to Breast Cancer with SNP-SNP Interaction Using BPSOHS and Emotional Neural Networks.
    Wang X; Peng Q; Fan Y
    Biomed Res Int; 2016; 2016():5164347. PubMed ID: 27294121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for detecting gene-gene interactions: a review.
    McKinney BA; Reif DM; Ritchie MD; Moore JH
    Appl Bioinformatics; 2006; 5(2):77-88. PubMed ID: 16722772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep hybrid model to detect multi-locus interacting SNPs in the presence of noise.
    Uppu S; Krishna A
    Int J Med Inform; 2018 Nov; 119():134-151. PubMed ID: 30342681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistasis Detection Based on Epi-GTBN.
    Chen X; Wong KC
    Methods Mol Biol; 2021; 2212():325-335. PubMed ID: 33733365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing genetic interactions in human disease association studies using statistical epistasis networks.
    Hu T; Sinnott-Armstrong NA; Kiralis JW; Andrew AS; Karagas MR; Moore JH
    BMC Bioinformatics; 2011 Sep; 12():364. PubMed ID: 21910885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epi-GTBN: an approach of epistasis mining based on genetic Tabu algorithm and Bayesian network.
    Guo Y; Zhong Z; Yang C; Hu J; Jiang Y; Liang Z; Gao H; Liu J
    BMC Bioinformatics; 2019 Aug; 20(1):444. PubMed ID: 31455207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.