BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12847078)

  • 41. Neuromagnetic indicators of auditory cortical reorganization of tinnitus.
    Weisz N; Wienbruch C; Dohrmann K; Elbert T
    Brain; 2005 Nov; 128(Pt 11):2722-31. PubMed ID: 16014655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Auditory intensity discrimination as a function of level-rove and tone duration in normal-hearing and impaired subjects: the "mid-level hump" revisited.
    Pienkowski M; Hagerman B
    Hear Res; 2009 Jul; 253(1-2):107-15. PubMed ID: 19345257
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Otoacoustic detection of risk of early hearing loss in ears with normal audiograms: a 3-year follow-up study.
    Job A; Raynal M; Kossowski M; Studler M; Ghernaouti C; Baffioni-Venturi A; Roux A; Darolles C; Guelorget A
    Hear Res; 2009 May; 251(1-2):10-6. PubMed ID: 19249340
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Automatic screening and detection of threshold fine structure.
    Heise SJ; Verhey JL; Mauermann M
    Int J Audiol; 2008 Aug; 47(8):520-32. PubMed ID: 18698525
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Test-retest repeatability of distortion product otoacoustic emissions.
    Wagner W; Heppelmann G; Vonthein R; Zenner HP
    Ear Hear; 2008 Jun; 29(3):378-91. PubMed ID: 18382378
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Standard cochlear implantation of adults with residual low-frequency hearing: implications for combined electro-acoustic stimulation.
    Novak MA; Black JM; Koch DB
    Otol Neurotol; 2007 Aug; 28(5):609-14. PubMed ID: 17514064
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice.
    Varghese GI; Zhu X; Frisina RD
    Hear Res; 2005 Nov; 209(1-2):60-7. PubMed ID: 16061336
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Speech recognition as a function of high-pass filter cutoff frequency for people with and without low-frequency cochlear dead regions.
    Vinay ; Moore BC
    J Acoust Soc Am; 2007 Jul; 122(1):542-53. PubMed ID: 17622189
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effect of noise-induced sloping high-frequency hearing loss on the gap-response in the inferior colliculus and auditory cortex of guinea pigs.
    Yin SK; Feng YM; Chen ZN; Wang J
    Hear Res; 2008 May; 239(1-2):126-40. PubMed ID: 18348901
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Middle ear and cochlear disorders result in different DPOAE growth behaviour: implications for the differentiation of sound conductive and cochlear hearing loss.
    Gehr DD; Janssen T; Michaelis CE; Deingruber K; Lamm K
    Hear Res; 2004 Jul; 193(1-2):9-19. PubMed ID: 15219315
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards understanding the specifics of cochlear hearing loss: a modelling approach.
    Stenfelt S
    Int J Audiol; 2008 Nov; 47 Suppl 2():S10-5. PubMed ID: 19012107
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Severe and extensive neonatal hearing loss in cats results in auditory cortex plasticity that differentiates into two regions.
    Rajan R; Irvine DR
    Eur J Neurosci; 2010 Jun; 31(11):1999-2013. PubMed ID: 20497473
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults.
    Dreisbach LE; Long KM; Lees SE
    Ear Hear; 2006 Oct; 27(5):466-79. PubMed ID: 16957498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Representation of acoustic signals in the human cochlea in presence of a cochlear implant electrode.
    Kiefer J; Böhnke F; Adunka O; Arnold W
    Hear Res; 2006 Nov; 221(1-2):36-43. PubMed ID: 16962268
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of cochlear involvement by distortion product otoacoustic emission in Behçet's disease.
    Dagli M; Eryilmaz A; Tanrikulu S; Aydin A; Gonul M; Gul U; Gocer C
    Auris Nasus Larynx; 2008 Sep; 35(3):333-7. PubMed ID: 17996415
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A review of the effects of selective inner hair cell lesions on distortion product otoacoustic emissions, cochlear function and auditory evoked potentials.
    Salvi RJ; Ding D; Wang J; Jiang HY
    Noise Health; 2000; 2(6):9-26. PubMed ID: 12689476
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Audiometry in fluctuant hearing loss.
    Lipscomb DM
    Otolaryngol Clin North Am; 1975 Jun; 8(2):439-53. PubMed ID: 1153207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Click-evoked otoacoustic emissions and the influence of high-frequency hearing losses in humans.
    Avan P; Elbez M; Bonfils P
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2771-7. PubMed ID: 9165731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A guinea pig model of selective severe high-frequency hearing loss.
    Havenith S; Klis SF; Versnel H; Grolman W
    Otol Neurotol; 2013 Oct; 34(8):1510-8. PubMed ID: 23928512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.