These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12848330)

  • 1. The adaptive character of the attentional system: statistical sensitivity in a target localization task.
    Reder LM; Weber K; Shang J; Vanyukov PM
    J Exp Psychol Hum Percept Perform; 2003 Jun; 29(3):631-49. PubMed ID: 12848330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An attentional-adaptation account of spatial negative priming: evidence from event-related potentials.
    Liu XL; Walsh MM; Reder LM
    Cogn Affect Behav Neurosci; 2014 Mar; 14(1):49-61. PubMed ID: 24464637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature-based statistical regularities of distractors modulate attentional capture.
    Stilwell BT; Bahle B; Vecera SP
    J Exp Psychol Hum Percept Perform; 2019 Mar; 45(3):419-433. PubMed ID: 30802131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altering spatial priority maps via statistical learning of target selection and distractor filtering.
    Ferrante O; Patacca A; Di Caro V; Della Libera C; Santandrea E; Chelazzi L
    Cortex; 2018 May; 102():67-95. PubMed ID: 29096874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial suppression due to statistical regularities in a visual detection task.
    van Moorselaar D; Theeuwes J
    Atten Percept Psychophys; 2022 Feb; 84(2):450-458. PubMed ID: 34773244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positional priming of pop-out: a relational-encoding account.
    Geyer T; Zehetleitner M; Müller HJ
    J Vis; 2010 Feb; 10(2):3.1-17. PubMed ID: 20462304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attentional control settings prevent abrupt onsets from capturing visual spatial attention.
    Al-Aidroos N; Harrison S; Pratt J
    Q J Exp Psychol (Hove); 2010 Jan; 63(1):31-41. PubMed ID: 19728228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-capture processes contribute to statistical learning of distractor locations in visual search.
    Sauter M; Hanning NM; Liesefeld HR; Müller HJ
    Cortex; 2021 Feb; 135():108-126. PubMed ID: 33360756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term (statistically learnt) and short-term (inter-trial) distractor-location effects arise at different pre- and post-selective processing stages.
    Qiu N; Zhang B; Allenmark F; Nasemann J; Tsai SY; Müller HJ; Shi Z
    Psychophysiology; 2023 Oct; 60(10):e14351. PubMed ID: 37277926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning What Is Irrelevant or Relevant: Expectations Facilitate Distractor Inhibition and Target Facilitation through Distinct Neural Mechanisms.
    van Moorselaar D; Slagter HA
    J Neurosci; 2019 Aug; 39(35):6953-6967. PubMed ID: 31270162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipatory Distractor Suppression Elicited by Statistical Regularities in Visual Search.
    Wang B; van Driel J; Ort E; Theeuwes J
    J Cogn Neurosci; 2019 Oct; 31(10):1535-1548. PubMed ID: 31180265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct roles of the intraparietal sulcus and temporoparietal junction in attentional capture from distractor features: An individual differences approach.
    Painter DR; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():50-62. PubMed ID: 25724234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to suppress likely distractor locations in visual search is driven by the local distractor frequency.
    Allenmark F; Zhang B; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2022 Nov; 48(11):1250-1278. PubMed ID: 36107665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Role of Top-Down Focused Spatial Attention in Preattentive Salience Coding and Salience-based Attentional Capture.
    Bertleff S; Fink GR; Weidner R
    J Cogn Neurosci; 2016 Aug; 28(8):1152-65. PubMed ID: 27054402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture by Context Elements, Not Attentional Suppression of Distractors, Explains the P
    Kerzel D; Burra N
    J Cogn Neurosci; 2020 Jun; 32(6):1170-1183. PubMed ID: 31967520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probability cueing of singleton-distractor locations in visual search: Priority-map- versus dimension-based inhibition?
    Zhang B; Allenmark F; Liesefeld HR; Shi Z; Müller HJ
    J Exp Psychol Hum Percept Perform; 2019 Sep; 45(9):1146-1163. PubMed ID: 31144860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proactively location-based suppression elicited by statistical learning.
    Kong S; Li X; Wang B; Theeuwes J
    PLoS One; 2020; 15(6):e0233544. PubMed ID: 32479531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical regularities modulate attentional capture independent of search strategy.
    Wang B; Theeuwes J
    Atten Percept Psychophys; 2018 Oct; 80(7):1763-1774. PubMed ID: 29968080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The attentional blink freezes spatial attention allocation to targets, not distractors: evidence from human electrophysiology.
    Pomerleau VJ; Fortier-Gauthier U; Corriveau I; McDonald JJ; Dell'Acqua R; Jolicœur P
    Brain Res; 2014 Apr; 1559():33-45. PubMed ID: 24607298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Region-based shielding of visual search from salient distractors: Target detection is impaired with same- but not different-dimension distractors.
    Sauter M; Liesefeld HR; Zehetleitner M; Müller HJ
    Atten Percept Psychophys; 2018 Apr; 80(3):622-642. PubMed ID: 29299850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.