These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 12848352)
21. A fuzzy clustering neural network architecture for multifunction upper-limb prosthesis. Karlik B; Tokhi MO; Alci M IEEE Trans Biomed Eng; 2003 Nov; 50(11):1255-61. PubMed ID: 14619995 [TBL] [Abstract][Full Text] [Related]
22. A comparison of surface and intramuscular myoelectric signal classification. Hargrove LJ; Englehart K; Hudgins B IEEE Trans Biomed Eng; 2007 May; 54(5):847-53. PubMed ID: 17518281 [TBL] [Abstract][Full Text] [Related]
23. Online electromyographic control of a robotic prosthesis. Shenoy P; Miller KJ; Crawford B; Rao RN IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405 [TBL] [Abstract][Full Text] [Related]
24. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. Jiang N; Englehart KB; Parker PA IEEE Trans Biomed Eng; 2009 Apr; 56(4):1070-80. PubMed ID: 19272889 [TBL] [Abstract][Full Text] [Related]
25. Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms. Ortiz-Catalan M; Håkansson B; Brånemark R IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):756-64. PubMed ID: 24710833 [TBL] [Abstract][Full Text] [Related]
26. Support vector machine-based classification scheme for myoelectric control applied to upper limb. Oskoei MA; Hu H IEEE Trans Biomed Eng; 2008 Aug; 55(8):1956-65. PubMed ID: 18632358 [TBL] [Abstract][Full Text] [Related]
27. Identification of motion from multi-channel EMG signals for control of prosthetic hand. Geethanjali P; Ray KK Australas Phys Eng Sci Med; 2011 Sep; 34(3):419-27. PubMed ID: 21667211 [TBL] [Abstract][Full Text] [Related]
28. Classification of Multiple Finger Motions During Dynamic Upper Limb Movements. Yang D; Yang W; Huang Q; Liu H IEEE J Biomed Health Inform; 2017 Jan; 21(1):134-141. PubMed ID: 26469791 [TBL] [Abstract][Full Text] [Related]
29. Control of multifunctional prosthetic hands by processing the electromyographic signal. Zecca M; Micera S; Carrozza MC; Dario P Crit Rev Biomed Eng; 2002; 30(4-6):459-85. PubMed ID: 12739757 [TBL] [Abstract][Full Text] [Related]
30. The effect of electrode displacements on pattern recognition based myoelectric control. Hargrove L; Englehart K; Hudgins B Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2203-6. PubMed ID: 17946096 [TBL] [Abstract][Full Text] [Related]
31. Control of upper limb prostheses: terminology and proportional myoelectric control-a review. Fougner A; Stavdahl O; Kyberd PJ; Losier YG; Parker PA IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):663-77. PubMed ID: 22665514 [TBL] [Abstract][Full Text] [Related]
32. Multiple binary classifications via linear discriminant analysis for improved controllability of a powered prosthesis. Hargrove LJ; Scheme EJ; Englehart KB; Hudgins BS IEEE Trans Neural Syst Rehabil Eng; 2010 Feb; 18(1):49-57. PubMed ID: 20071277 [TBL] [Abstract][Full Text] [Related]
33. A compact system for simultaneous stimulation and recording for closed-loop myoelectric control. Garenfeld MA; Jorgovanovic N; Ilic V; Strbac M; Isakovic M; Dideriksen JL; Dosen S J Neuroeng Rehabil; 2021 May; 18(1):87. PubMed ID: 34034762 [TBL] [Abstract][Full Text] [Related]
34. Dexterous control of a prosthetic hand using fine-wire intramuscular electrodes in targeted extrinsic muscles. Cipriani C; Segil JL; Birdwell JA; ff Weir RF IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):828-36. PubMed ID: 24760929 [TBL] [Abstract][Full Text] [Related]
35. Classification of finger activation for use in a robotic prosthesis arm. Peleg D; Braiman E; Yom-Tov E; Inbar GF IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):290-3. PubMed ID: 12611366 [TBL] [Abstract][Full Text] [Related]
36. Optimizing pattern recognition-based control for partial-hand prosthesis application. Earley EJ; Adewuyi AA; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3574-7. PubMed ID: 25570763 [TBL] [Abstract][Full Text] [Related]
37. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning. Vasan G; Pilarski PM IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025 [TBL] [Abstract][Full Text] [Related]
38. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. Farina D; Jiang N; Rehbaum H; Holobar A; Graimann B; Dietl H; Aszmann OC IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):797-809. PubMed ID: 24760934 [TBL] [Abstract][Full Text] [Related]
39. Real-time and offline performance of pattern recognition myoelectric control using a generic electrode grid with targeted muscle reinnervation patients. Tkach DC; Young AJ; Smith LH; Rouse EJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):727-34. PubMed ID: 24760931 [TBL] [Abstract][Full Text] [Related]
40. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking. Hartmann C; Dosen S; Amsuess S; Farina D IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):807-16. PubMed ID: 25222951 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]