These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 12848352)

  • 41. Real time ECG artifact removal for myoelectric prosthesis control.
    Zhou P; Lock B; Kuiken TA
    Physiol Meas; 2007 Apr; 28(4):397-413. PubMed ID: 17395995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multimodal sensor controlled three Degree of Freedom transradial prosthesis.
    Ohnishi K; Morio T; Takagi T; Kajitani I
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650467. PubMed ID: 24187284
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Electrode Density Affects the Robustness of Myoelectric Pattern Recognition System With and Without Electrode Shift.
    He J; Sheng X; Zhu X; Jiang N
    IEEE J Biomed Health Inform; 2019 Jan; 23(1):156-163. PubMed ID: 29994645
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Feature extraction using extrema sampling of discrete derivatives for spike sorting in implantable upper-limb neural prostheses.
    Zamani M; Demosthenous A
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):716-26. PubMed ID: 24760942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control.
    Scheme E; Lock B; Hargrove L; Hill W; Kuruganti U; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):149-57. PubMed ID: 23475378
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fuzzy discriminant analysis based feature projection in myoelectric control.
    Khushaba RN; Al-Jumaily A; Al-Ani A
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5049-52. PubMed ID: 19163851
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous, proportional, multi-axis prosthesis control using multichannel surface EMG.
    Yatsenko D; McDonnall D; Guillory KS
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6134-7. PubMed ID: 18003415
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration.
    Young AJ; Hargrove LJ; Kuiken TA
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):645-52. PubMed ID: 22147289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Upper extremity myoelectric prosthetics.
    Uellendahl JE
    Phys Med Rehabil Clin N Am; 2000 Aug; 11(3):639-52. PubMed ID: 10989484
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving the Robustness of Real-Time Myoelectric Pattern Recognition against Arm Position Changes in Transradial Amputees.
    Geng Y; Samuel OW; Wei Y; Li G
    Biomed Res Int; 2017; 2017():5090454. PubMed ID: 28523276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards control of dexterous hand manipulations using a silicon Pattern Generator.
    Russell A; Tenore F; Singhal G; Thakor N; Etienne-Cummings R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3455-8. PubMed ID: 19163452
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study on Interaction Between Temporal and Spatial Information in Classification of EMG Signals for Myoelectric Prostheses.
    Menon R; Di Caterina G; Lakany H; Petropoulakis L; Conway BA; Soraghan JJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1832-1842. PubMed ID: 28436879
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of the weight actions of the hand prosthesis on the performance of pattern recognition based myoelectric control: preliminary study.
    Cipriani C; Sassu R; Controzzi M; Carrozza MC
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1620-3. PubMed ID: 22254633
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A strategy for minimizing the effect of misclassifications during real time pattern recognition myoelectric control.
    Simon AM; Hargrove LJ; Lock BA; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1327-30. PubMed ID: 19964513
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.