These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 12848509)
1. Stereoselectivity of the generation of 3-mercaptohexanal and 3-mercaptohexanol by lipase-catalyzed hydrolysis of 3-acetylthioesters. Wakabayashi H; Wakabayashi M; Eisenreich W; Engel KH J Agric Food Chem; 2003 Jul; 51(15):4349-55. PubMed ID: 12848509 [TBL] [Abstract][Full Text] [Related]
2. Stereochemical course of the generation of 3-mercaptohexanal and 3-mercaptohexanol by beta-lyase-catalyzed cleavage of cysteine conjugates. Wakabayashi H; Wakabayashi M; Eisenreich W; Engel KH J Agric Food Chem; 2004 Jan; 52(1):110-6. PubMed ID: 14709022 [TBL] [Abstract][Full Text] [Related]
3. Preparation of passion fruit-typical 2-alkyl ester enantiomers via lipase-catalyzed kinetic resolution. Strohalm H; Dold S; Pendzialek K; Weiher M; Engel KH J Agric Food Chem; 2010 May; 58(10):6328-33. PubMed ID: 20415422 [TBL] [Abstract][Full Text] [Related]
4. Study of lipase-catalyzed hydrolysis of some monoterpene esters. Chatterjee T; Chatterjee BK; Bhattacharyya DK Can J Microbiol; 2001 May; 47(5):397-403. PubMed ID: 11400729 [TBL] [Abstract][Full Text] [Related]
5. Analysis of a lipase-catalyzed kinetic resolution by chiral normal-phase liquid chromatography. Löwendahl C; Allenmark S Biomed Chromatogr; 1997; 11(5):289-95. PubMed ID: 9376711 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the impact of water on the enantioselectivity displayed by CALB in the kinetic resolution of δ-functionalized alkan-2-ol derivatives. Yang B; Lihammar R; Bäckvall JE Chemistry; 2014 Oct; 20(42):13517-21. PubMed ID: 25195930 [TBL] [Abstract][Full Text] [Related]
7. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives. Ammazzalorso A; Amoroso R; Bettoni G; De Filippis B; Fantacuzzi M; Giampietro L; Maccallini C; Tricca ML Chirality; 2008 Feb; 20(2):115-8. PubMed ID: 18074337 [TBL] [Abstract][Full Text] [Related]
8. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters. Engström K; Nyhlén J; Sandström AG; Bäckvall JE J Am Chem Soc; 2010 May; 132(20):7038-42. PubMed ID: 20450151 [TBL] [Abstract][Full Text] [Related]
9. Enantioselective lipase-catalyzed ester hydrolysis: effects on rates and enantioselectivity from a variation of the ester structure. Bojarski J; Oxelbark J; Andersson C; Allenmark S Chirality; 1993; 5(3):154-8. PubMed ID: 8338725 [TBL] [Abstract][Full Text] [Related]
10. Enantiopure derivatives of 1,2-alkanediols: substrate requirements of lipase B from Candida antarctica. Jacobsen EE; Hoff BH; Anthonsen T Chirality; 2000 Oct; 12(9):654-9. PubMed ID: 10984738 [TBL] [Abstract][Full Text] [Related]
11. Lipase-Catalyzed Chemoselective Ester Hydrolysis of Biomimetically Coupled Aryls for the Synthesis of Unsymmetric Biphenyl Esters. Ehlert J; Kronemann J; Zumbrägel N; Preller M Molecules; 2019 Nov; 24(23):. PubMed ID: 31771200 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of flavor and fragrance esters using Candida antarctica lipase. Larios A; García HS; Oliart RM; Valerio-Alfaro G Appl Microbiol Biotechnol; 2004 Sep; 65(4):373-6. PubMed ID: 15248036 [TBL] [Abstract][Full Text] [Related]
14. A new efficient enantioselective synthesis of (+)-cis-2-methyl-4-propyl-1,3-oxathiane, a valuable ingredient for the aroma of passion fruit. Scafato P; Colangelo A; Rosini C Chirality; 2009 Jan; 21(1):176-82. PubMed ID: 18698641 [TBL] [Abstract][Full Text] [Related]
15. Lipase-catalyzed enantioselective transesterification of cyanohydrins for the synthesis of (S)-alpha-cyano-3-phenoxybenzyl acetate. Zhu Y; Yang LR; Zhu ZQ; Yao S; Cen P Ann N Y Acad Sci; 1998 Dec; 864():646-8. PubMed ID: 9928153 [No Abstract] [Full Text] [Related]
16. Lipase-catalyzed kinetic resolution as key step in the synthesis of enantiomerically pure σ ligands with 2-benzopyran structure. Knappmann I; Lehmkuhl K; Köhler J; Schepmann D; Giera M; Bracher F; Wünsch B Bioorg Med Chem; 2017 Jul; 25(13):3384-3395. PubMed ID: 28501431 [TBL] [Abstract][Full Text] [Related]
17. A water molecule in the stereospecificity pocket of Candida antarctica lipase B enhances enantioselectivity towards pentan-2-ol. Léonard V; Fransson L; Lamare S; Hult K; Graber M Chembiochem; 2007 Apr; 8(6):662-7. PubMed ID: 17328021 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer. Yilmaz E; Sezgin M Appl Biochem Biotechnol; 2012 Apr; 166(8):1927-40. PubMed ID: 22383051 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of optically active vicinal fluorohydrins by lipase-catalyzed deracemization. Wölker D; Haufe G J Org Chem; 2002 May; 67(9):3015-21. PubMed ID: 11975561 [TBL] [Abstract][Full Text] [Related]
20. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester. Akoz E; Akbulut OY; Yilmaz M Appl Biochem Biotechnol; 2014 Jan; 172(1):509-23. PubMed ID: 24092454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]