These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 12848543)

  • 1. A nanofluidic switching device.
    Karlsson R; Karlsson A; Orwar O
    J Am Chem Soc; 2003 Jul; 125(28):8442-3. PubMed ID: 12848543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophoretic transport in surfactant nanotube networks wired on microfabricated substrates.
    Hurtig J; Gustafsson B; Tokarz M; Orwar O
    Anal Chem; 2006 Aug; 78(15):5281-8. PubMed ID: 16878860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface.
    Brammer KS; Oh S; Cobb CJ; Bjursten LM; van der Heyde H; Jin S
    Acta Biomater; 2009 Oct; 5(8):3215-23. PubMed ID: 19447210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermoactuated diffusion control in soft matter nanofluidic devices.
    Markström M; Lizana L; Orwar O; Jesorka A
    Langmuir; 2008 May; 24(9):5166-71. PubMed ID: 18393556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled initiation of enzymatic reactions in micrometer-sized biomimetic compartments.
    Karlsson A; Sott K; Markström M; Davidson M; Konkoli Z; Orwar O
    J Phys Chem B; 2005 Feb; 109(4):1609-17. PubMed ID: 16851132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid nanotube formation from streptavidin-membrane binding.
    Liu H; Bachand GD; Kim H; Hayden CC; Abate EA; Sasaki DY
    Langmuir; 2008 Apr; 24(8):3686-9. PubMed ID: 18336048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of possible sources of nanotoxicity from carbon nanotubes inserted into membrane bilayers using membrane interaction quantitative structure--activity relationship analysis.
    Liu J; Hopfinger AJ
    Chem Res Toxicol; 2008 Feb; 21(2):459-66. PubMed ID: 18189365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape- and dimension-controlled single-crystalline silicon and SiGe nanotubes: toward nanofluidic FET devices.
    Ben Ishai M; Patolsky F
    J Am Chem Soc; 2009 Mar; 131(10):3679-89. PubMed ID: 19226180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices.
    Cheng LJ; Guo LJ
    ACS Nano; 2009 Mar; 3(3):575-84. PubMed ID: 19220010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.
    Dickey MD; Weiss EA; Smythe EJ; Chiechi RC; Capasso F; Whitesides GM
    ACS Nano; 2008 Apr; 2(4):800-8. PubMed ID: 19206613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofluidic concentration of selectively extracted biomolecule analytes by microtubules.
    Kim T; Meyhöfer E
    Anal Chem; 2008 Jul; 80(14):5383-90. PubMed ID: 18517222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofluidic networks based on surfactant membrane technology.
    Karlsson A; Karlsson M; Karlsson R; Sott K; Lundqvist A; Tokarz M; Orwar O
    Anal Chem; 2003 Jun; 75(11):2529-37. PubMed ID: 12948118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid mixing in growing microscale vesicles conjugated by surfactant nanotubes.
    Davidson M; Dommersnes P; Markström M; Joanny JF; Karlsson M; Orwar O
    J Am Chem Soc; 2005 Feb; 127(4):1251-7. PubMed ID: 15669864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative flow of the walls of phospholipid tether bilayers.
    Nasseri B; Florence AT
    Int J Pharm; 2005 Jul; 298(2):372-7. PubMed ID: 15985348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct reconstitution of plasma membrane lipids and proteins in nanotube-vesicle networks.
    Bauer B; Davidson M; Orwar O
    Langmuir; 2006 Oct; 22(22):9329-32. PubMed ID: 17042549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid vesicles and other colloids as drug carriers on the skin.
    Cevc G
    Adv Drug Deliv Rev; 2004 Mar; 56(5):675-711. PubMed ID: 15019752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable filtering of chemical signals in a simple nanoscale reaction-diffusion network.
    Lizana L; Konkoli Z; Orwar O
    J Phys Chem B; 2007 Jun; 111(22):6214-9. PubMed ID: 17497911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic transport of latex particles in lipid nanotubes.
    Tokarz M; Hakonen B; Dommersnes P; Orwar O; Akerman B
    Langmuir; 2007 Jul; 23(14):7652-8. PubMed ID: 17547424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.