BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 12848559)

  • 1. The stereochemistry of the thermal cheletropic decarbonylation of 3-cyclopentenone as determined by multiphoton infrared photolysis/thermolysis.
    Unruh GR; Birney DM
    J Am Chem Soc; 2003 Jul; 125(28):8529-33. PubMed ID: 12848559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental support for planar pseudopericyclic transition states in thermal cheletropic decarbonylations.
    Wei HX; Zhou C; Ham S; White JM; Birney DM
    Org Lett; 2004 Nov; 6(23):4289-92. PubMed ID: 15524465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiphoton infrared initiated thermal reactions of esters: pseudopericyclic eight-centered cis-elimination.
    Ji H; Li L; Xu X; Ham S; Hammad LA; Birney DM
    J Am Chem Soc; 2009 Jan; 131(2):528-37. PubMed ID: 19140791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green chemistry strategies using crystal-to-crystal photoreactions: stereoselective synthesis and decarbonylation of trans-alpha,alpha'-dialkenoylcyclohexanones.
    Mortko CJ; Garcia-Garibay MA
    J Am Chem Soc; 2005 Jun; 127(22):7994-5. PubMed ID: 15926806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical investigation of the decarbonylation of acetaldehyde by Fe+ and Cr+.
    Zhao L; Guo W; Zhang R; Wu S; Lu X
    Chemphyschem; 2006 Jun; 7(6):1345-54. PubMed ID: 16671128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A thermal decarbonylation of penam beta-lactams.
    Wiitala KW; Tian Z; Cramer CJ; Hoye TR
    J Org Chem; 2008 Apr; 73(8):3024-31. PubMed ID: 18348573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of the cyclopropenone decarbonylation reaction. A density functional theory and transient spectroscopy study.
    Poloukhtine A; Popik VV
    J Phys Chem A; 2006 Feb; 110(5):1749-57. PubMed ID: 16451004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular structure, infrared spectrum, and photochemistry of squaric acid dimethyl ester in solid argon.
    Breda S; Reva I; Lapinski L; Fausto R
    J Phys Chem A; 2006 Sep; 110(38):11034-45. PubMed ID: 16986836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the rate of spin-forbidden thermolysis of HN3 and CH3N3.
    Besora M; Harvey JN
    J Chem Phys; 2008 Jul; 129(4):044303. PubMed ID: 18681642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction.
    Yasaka Y; Yoshida K; Wakai C; Matubayasi N; Nakahara M
    J Phys Chem A; 2006 Sep; 110(38):11082-90. PubMed ID: 16986841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of acetaldehyde with Ni+: an extended theoretical study of the decarbonylation mechanism of acetaldehyde by first-row transition metal ions.
    Chen X; Guo W; Zhao L; Fu Q; Ma Y
    J Phys Chem A; 2007 May; 111(18):3566-70. PubMed ID: 17432835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural manifestations of the cheletropic reaction.
    Wooi GY; White JM
    Org Biomol Chem; 2005 Mar; 3(6):972-4. PubMed ID: 15750637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate of diradicals in the caldera: stereochemistry of thermal stereomutation and ring enlargement in cis- and trans-1-cyano-2(E)-propenylcyclopropanes.
    von E Doering W; Barsa EA
    J Am Chem Soc; 2004 Oct; 126(39):12353-62. PubMed ID: 15453769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and structural characterization of porphyrinic enediynes: geometric and electronic effects on thermal and photochemical reactivity.
    Chandra T; Kraft BJ; Huffman JC; Zaleski JM
    Inorg Chem; 2003 Aug; 42(17):5158-72. PubMed ID: 12924887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermolysis of fluorinated single-walled carbon nanotubes: identification of gaseous decomposition products by matrix isolation infrared spectroscopy.
    Bettinger HF; Peng H
    J Phys Chem B; 2005 Dec; 109(49):23218-24. PubMed ID: 16375285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly efficient photochemical generation of a triple bond: synthesis, properties, and photodecarbonylation of cyclopropenones.
    Poloukhtine A; Popik VV
    J Org Chem; 2003 Oct; 68(20):7833-40. PubMed ID: 14510563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cleavage of carbon-carbon bonds of diphenylacetylene and its derivatives via photolysis of Pt complexes: tuning the C-C bond formation energy toward selective C-C bond activation.
    Gunay A; Jones WD
    J Am Chem Soc; 2007 Jul; 129(28):8729-35. PubMed ID: 17580867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational flexibility, UV-induced decarbonylation, and FTIR spectra of 1-phenyl-1,2 propanedione in solid xenon and in the low temperature amorphous phase.
    Lopes S; Gómez-Zavaglia A; Lapinski L; Fausto R
    J Phys Chem A; 2005 Jun; 109(25):5560-70. PubMed ID: 16833887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling both ground- and excited-state thermal barriers to Bergman cyclization with alkyne termini substitution.
    Nath M; Pink M; Zaleski JM
    J Am Chem Soc; 2005 Jan; 127(2):478-9. PubMed ID: 15643844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photogeneration of two metastable NO linkage isomers with high populations of up to 76% in trans-[RuCl(py)4(NO)][PF6]2.1/2H2O.
    Schaniel D; Cormary B; Malfant I; Valade L; Woike T; Delley B; Krämer KW; Güdel HU
    Phys Chem Chem Phys; 2007 Jul; 9(28):3717-24. PubMed ID: 17622406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.