These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 12849400)

  • 21. Failure of glycine site NMDA receptor antagonists to protect against L-2-chloropropionic acid-induced neurotoxicity highlights the uniqueness of cerebellar NMDA receptors.
    Widdowson PS; Gyte AJ; Upton R; Wyatt I
    Brain Res; 1996 Nov; 738(2):236-42. PubMed ID: 8955518
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of prolonged isoflurane anesthesia on plasma, extracellular, and CSF glutamate, neuronal activity, 125I-Mk801 NMDA receptor binding, and brain edema in traumatic brain-injured rats.
    Stover JF; Sakowitz OW; Kroppenstedt SN; Thomale UW; Kempski OS; Flügge G; Unterberg AW
    Acta Neurochir (Wien); 2004 Aug; 146(8):819-30. PubMed ID: 15254804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Re-evaluation of phencyclidine low-affinity or "non-NMDA" binding sites.
    Hirbec H; Mausset AL; Kamenka JM; Privat A; Vignon J
    J Neurosci Res; 2002 May; 68(3):305-14. PubMed ID: 12111860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels.
    Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. BQ-869, a novel NMDA receptor antagonist, protects against excitotoxicity and attenuates cerebral ischemic injury in stroke.
    Yu G; Wu F; Wang ES
    Int J Clin Exp Pathol; 2015; 8(2):1213-25. PubMed ID: 25973006
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycine/NMDA receptor antagonists as potential CNS therapeutic agents: ACEA-1021 and related compounds.
    Cai SX
    Curr Top Med Chem; 2006; 6(7):651-62. PubMed ID: 16719807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection.
    Radenovic L; Selakovic V
    Brain Res Bull; 2005 Sep; 67(1-2):133-41. PubMed ID: 16140172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular basis of memantine action in Alzheimer's disease and other neurologic disorders: low-affinity, uncompetitive antagonism.
    Lipton SA
    Curr Alzheimer Res; 2005 Apr; 2(2):155-65. PubMed ID: 15974913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neurological deterioration as a potential alternative endpoint in human clinical trials of experimental pharmacological agents for treatment of severe traumatic brain injuries. Executive Committee of the International Selfotel Trial.
    Morris GF; Juul N; Marshall SB; Benedict B; Marshall LF
    Neurosurgery; 1998 Dec; 43(6):1369-72; discussion 1372-4. PubMed ID: 9848851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of in situ administration of excitatory amino acid antagonists on rapid microglial and astroglial reactions in rat hippocampus following traumatic brain injury.
    Suma T; Koshinaga M; Fukushima M; Kano T; Katayama Y
    Neurol Res; 2008 May; 30(4):420-9. PubMed ID: 18248696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Excitatory amino acid agonists and antagonists: pharmacology and therapeutic applications.
    Trist DG
    Pharm Acta Helv; 2000 Mar; 74(2-3):221-9. PubMed ID: 10812962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel hypoglycemic injury mechanism: N-methyl-D-aspartate receptor-mediated white matter damage.
    Yang X; Hamner MA; Brown AM; Evans RD; Ye ZC; Chen S; Ransom BR
    Ann Neurol; 2014 Apr; 75(4):492-507. PubMed ID: 24242287
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuation of brain edema, blood-brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-D-aspartate receptor antagonist, after experimental traumatic brain injury in rats.
    Dempsey RJ; Başkaya MK; Doğan A
    Neurosurgery; 2000 Aug; 47(2):399-404; discussion 404-6. PubMed ID: 10942013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NR2B selective NMDA receptor antagonists.
    Nikam SS; Meltzer LT
    Curr Pharm Des; 2002; 8(10):845-55. PubMed ID: 11945135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Do NMDA antagonists protect against cerebral ischemia: are clinical trials warranted?
    Buchan AM
    Cerebrovasc Brain Metab Rev; 1990; 2(1):1-26. PubMed ID: 2144995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.
    Palmer GC
    Curr Drug Targets; 2001 Sep; 2(3):241-71. PubMed ID: 11554551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antagonists and agonists at the glycine site of the NMDA receptor for therapeutic interventions.
    Jansen M; Dannhardt G
    Eur J Med Chem; 2003; 38(7-8):661-70. PubMed ID: 12932897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glutamate-based therapeutic approaches: NR2B receptor antagonists.
    Gogas KR
    Curr Opin Pharmacol; 2006 Feb; 6(1):68-74. PubMed ID: 16376149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficacy of competitive vs noncompetitive blockade of the NMDA channel following traumatic brain injury.
    Golding EM; Vink R
    Mol Chem Neuropathol; 1995; 24(2-3):137-50. PubMed ID: 7632318
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel approach to the role of NMDA receptors in traumatic brain injury.
    Shohami E; Biegon A
    CNS Neurol Disord Drug Targets; 2014; 13(4):567-73. PubMed ID: 24168367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.