These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 12850135)

  • 1. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: regulation of the central metabolic pathways.
    Blencke HM; Homuth G; Ludwig H; Mäder U; Hecker M; Stülke J
    Metab Eng; 2003 Apr; 5(2):133-49. PubMed ID: 12850135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CcpN controls central carbon fluxes in Bacillus subtilis.
    Tännler S; Fischer E; Le Coq D; Doan T; Jamet E; Sauer U; Aymerich S
    J Bacteriol; 2008 Sep; 190(18):6178-87. PubMed ID: 18586936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus.
    Seidl K; Müller S; François P; Kriebitzsch C; Schrenzel J; Engelmann S; Bischoff M; Berger-Bächi B
    BMC Microbiol; 2009 May; 9():95. PubMed ID: 19450265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: transcription regulation is important but not sufficient to account for metabolic adaptation.
    Schilling O; Frick O; Herzberg C; Ehrenreich A; Heinzle E; Wittmann C; Stülke J
    Appl Environ Microbiol; 2007 Jan; 73(2):499-507. PubMed ID: 17122393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis.
    Tobisch S; Zühlke D; Bernhardt J; Stülke J; Hecker M
    J Bacteriol; 1999 Nov; 181(22):6996-7004. PubMed ID: 10559165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rewiring the Glucose Transportation and Central Metabolic Pathways for Overproduction of N-Acetylglucosamine in Bacillus subtilis.
    Gu Y; Deng J; Liu Y; Li J; Shin HD; Du G; Chen J; Liu L
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide mRNA profiling in glucose starved Bacillus subtilis cells.
    Koburger T; Weibezahn J; Bernhardt J; Homuth G; Hecker M
    Mol Genet Genomics; 2005 Aug; 274(1):1-12. PubMed ID: 15809868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YvcK of Bacillus subtilis is required for a normal cell shape and for growth on Krebs cycle intermediates and substrates of the pentose phosphate pathway.
    Görke B; Foulquier E; Galinier A
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3777-3791. PubMed ID: 16272399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription of glycolytic genes and operons in Bacillus subtilis: evidence for the presence of multiple levels of control of the gapA operon.
    Ludwig H; Homuth G; Schmalisch M; Dyka FM; Hecker M; Stülke J
    Mol Microbiol; 2001 Jul; 41(2):409-22. PubMed ID: 11489127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
    Dauner M; Storni T; Sauer U
    J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses.
    Moreno MS; Schneider BL; Maile RR; Weyler W; Saier MH
    Mol Microbiol; 2001 Mar; 39(5):1366-81. PubMed ID: 11251851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixomics analysis of Bacillus subtilis: effect of oxygen availability on riboflavin production.
    Hu J; Lei P; Mohsin A; Liu X; Huang M; Li L; Hu J; Hang H; Zhuang Y; Guo M
    Microb Cell Fact; 2017 Sep; 16(1):150. PubMed ID: 28899391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetate metabolism and its regulation in Corynebacterium glutamicum.
    Gerstmeir R; Wendisch VF; Schnicke S; Ruan H; Farwick M; Reinscheid D; Eikmanns BJ
    J Biotechnol; 2003 Sep; 104(1-3):99-122. PubMed ID: 12948633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional activation of the Bacillus subtilis ackA gene requires sequences upstream of the promoter.
    Turinsky AJ; Grundy FJ; Kim JH; Chambliss GH; Henkin TM
    J Bacteriol; 1998 Nov; 180(22):5961-7. PubMed ID: 9811655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes.
    Servant P; Le Coq D; Aymerich S
    Mol Microbiol; 2005 Mar; 55(5):1435-51. PubMed ID: 15720552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Knockout of the ccpA gene in Bacillus subtilis and influence on riboflavin production].
    Ying M; Ban R
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):23-7. PubMed ID: 16579459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation.
    Ludwig H; Rebhan N; Blencke HM; Merzbacher M; Stülke J
    Mol Microbiol; 2002 Jul; 45(2):543-53. PubMed ID: 12123463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains.
    Liu DF; Ai GM; Zheng QX; Liu C; Jiang CY; Liu LX; Zhang B; Liu YM; Yang C; Liu SJ
    Microb Cell Fact; 2014 Mar; 13(1):40. PubMed ID: 24628944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.