These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 12850142)

  • 1. Using a neural network and spatial clustering to predict the location of active sites in enzymes.
    Gutteridge A; Bartlett GJ; Thornton JM
    J Mol Biol; 2003 Jul; 330(4):719-34. PubMed ID: 12850142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence-based enzyme catalytic domain prediction using clustering and aggregated mutual information content.
    Choi K; Kim S
    J Bioinform Comput Biol; 2011 Oct; 9(5):597-611. PubMed ID: 21976378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting and annotating catalytic residues: an information theoretic approach.
    Sterner B; Singh R; Berger B
    J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between functional subclasses and information contained in active-site and ligand-binding residues in diverse superfamilies.
    Nagao C; Nagano N; Mizuguchi K
    Proteins; 2010 Aug; 78(10):2369-84. PubMed ID: 20544971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines.
    Tong W; Williams RJ; Wei Y; Murga LF; Ko J; Ondrechen MJ
    Protein Sci; 2008 Feb; 17(2):333-41. PubMed ID: 18096640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces.
    Ben-Shimon A; Eisenstein M
    J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.
    Parasuram R; Mills CL; Wang Z; Somasundaram S; Beuning PJ; Ondrechen MJ
    Methods; 2016 Jan; 93():51-63. PubMed ID: 26564235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GASS-WEB: a web server for identifying enzyme active sites based on genetic algorithms.
    Moraes JPA; Pappa GL; Pires DEV; Izidoro SC
    Nucleic Acids Res; 2017 Jul; 45(W1):W315-W319. PubMed ID: 28459991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicted protein-protein interaction sites from local sequence information.
    Ofran Y; Rost B
    FEBS Lett; 2003 Jun; 544(1-3):236-9. PubMed ID: 12782323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting metal-binding site residues in low-resolution structural models.
    Sodhi JS; Bryson K; McGuffin LJ; Ward JJ; Wernisch L; Jones DT
    J Mol Biol; 2004 Sep; 342(1):307-20. PubMed ID: 15313626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active site prediction for comparative model structures with thematics.
    Shehadi IA; Abyzov A; Uzun A; Wei Y; Murga LF; Ilyin V; Ondrechen MJ
    J Bioinform Comput Biol; 2005 Feb; 3(1):127-43. PubMed ID: 15751116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of topological clustering within protein networks using edge metrics that evaluate full sequence, full structure, and active site microenvironment similarity.
    Leuthaeuser JB; Knutson ST; Kumar K; Babbitt PC; Fetrow JS
    Protein Sci; 2015 Sep; 24(9):1423-39. PubMed ID: 26073648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of functional sites in proteins using conserved functional group analysis.
    Innis CA; Anand AP; Sowdhamini R
    J Mol Biol; 2004 Apr; 337(4):1053-68. PubMed ID: 15033369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HotPatch: a statistical approach to finding biologically relevant features on protein surfaces.
    Pettit FK; Bare E; Tsai A; Bowie JU
    J Mol Biol; 2007 Jun; 369(3):863-79. PubMed ID: 17451744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network method for prediction of beta-turn types in proteins using evolutionary information.
    Kaur H; Raghava GP
    Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains.
    Summers EL; Moon CD; Atua R; Arcus VL
    Acta Crystallogr F Struct Biol Commun; 2016 Oct; 72(Pt 10):750-761. PubMed ID: 27710940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of glycoside hydrolase family 98: catalytic machinery, mechanism and a novel putative carbohydrate binding module.
    Rigden DJ
    FEBS Lett; 2005 Oct; 579(25):5466-72. PubMed ID: 16212961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.
    Herrgard S; Cammer SA; Hoffman BT; Knutson S; Gallina M; Speir JA; Fetrow JS; Baxter SM
    Proteins; 2003 Dec; 53(4):806-16. PubMed ID: 14635123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.