These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 12850162)

  • 1. Inhibition of host cell cytokinesis by Chlamydia trachomatis infection.
    Greene W; Zhong G
    J Infect; 2003 Jul; 47(1):45-51. PubMed ID: 12850162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles.
    Yasir M; Pachikara ND; Bao X; Pan Z; Fan H
    Infect Immun; 2011 Oct; 79(10):4019-28. PubMed ID: 21807906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis Inclusion Disrupts Host Cell Cytokinesis to Enhance Its Growth in Multinuclear Cells.
    Sun HS; Sin AT; Poirier MB; Harrison RE
    J Cell Biochem; 2016 Jan; 117(1):132-43. PubMed ID: 26084267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection.
    Clausen JD; Christiansen G; Holst HU; Birkelund S
    Mol Microbiol; 1997 Aug; 25(3):441-9. PubMed ID: 9302007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orchestration of the mammalian host cell glucose transporter proteins-1 and 3 by Chlamydia contributes to intracellular growth and infectivity.
    Wang X; Hybiske K; Stephens RS
    Pathog Dis; 2017 Nov; 75(8):. PubMed ID: 29040458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis.
    Subbarayal P; Karunakaran K; Winkler AC; Rother M; Gonzalez E; Meyer TF; Rudel T
    PLoS Pathog; 2015 Apr; 11(4):e1004846. PubMed ID: 25906164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of apoptosis by Chlamydia psittaci and Chlamydia trachomatis infection in tissue culture cells.
    Gibellini D; Panaya R; Rumpianesi F
    Zentralbl Bakteriol; 1998 Jul; 288(1):35-43. PubMed ID: 9728403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of neutrophils by Chlamydia trachomatis-infected epithelial cells is modulated by the chlamydial plasmid.
    Lehr S; Vier J; Häcker G; Kirschnek S
    Microbes Infect; 2018 May; 20(5):284-292. PubMed ID: 29499390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Expression of SOCS-1, 3 induced by Chlamydia trachomatis-infected Hela229].
    Wei XQ; Cheng W; Yan J; Mei B; Huo Z; Yu P
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2004 Dec; 29(6):639-42. PubMed ID: 16114546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlamydial infection induces host cytokinesis failure at abscission.
    Brown HM; Knowlton AE; Grieshaber SS
    Cell Microbiol; 2012 Oct; 14(10):1554-67. PubMed ID: 22646503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Chlamydia trachomatis in enucleated cells.
    Perara E; Yen TS; Ganem D
    Infect Immun; 1990 Nov; 58(11):3816-8. PubMed ID: 2228252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival and death of intestinal cells infected by Chlamydia trachomatis.
    Foschi C; Bortolotti M; Marziali G; Polito L; Marangoni A; Bolognesi A
    PLoS One; 2019; 14(4):e0215956. PubMed ID: 31026281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infection of HeLa cells with Chlamydia trachomatis inhibits protein synthesis and causes multiple changes to host cell pathways.
    Ohmer M; Tzivelekidis T; Niedenführ N; Volceanov-Hahn L; Barth S; Vier J; Börries M; Busch H; Kook L; Biniossek ML; Schilling O; Kirschnek S; Häcker G
    Cell Microbiol; 2019 Apr; 21(4):e12993. PubMed ID: 30551267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence lifetime imaging unravels C. trachomatis metabolism and its crosstalk with the host cell.
    Szaszák M; Steven P; Shima K; Orzekowsky-Schröder R; Hüttmann G; König IR; Solbach W; Rupp J
    PLoS Pathog; 2011 Jul; 7(7):e1002108. PubMed ID: 21779161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural and molecular analyses of the persistence of Chlamydia trachomatis (serovar K) in human monocytes.
    Koehler L; Nettelnbreker E; Hudson AP; Ott N; Gérard HC; Branigan PJ; Schumacher HR; Drommer W; Zeidler H
    Microb Pathog; 1997 Mar; 22(3):133-42. PubMed ID: 9075216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis inclusions induce asymmetric cleavage furrow formation and ingression failure in host cells.
    Sun HS; Wilde A; Harrison RE
    Mol Cell Biol; 2011 Dec; 31(24):5011-22. PubMed ID: 21969606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the Growth of
    Nogueira AT; Braun KM; Carabeo RA
    Front Cell Infect Microbiol; 2017; 7():438. PubMed ID: 29067282
    [No Abstract]   [Full Text] [Related]  

  • 18. Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis-infected cells.
    Fadel S; Eley A
    J Med Microbiol; 2004 Feb; 53(Pt 2):93-95. PubMed ID: 14729927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlamydia trachomatis genes whose products are related to energy metabolism are expressed differentially in active vs. persistent infection.
    Gérard HC; Freise J; Wang Z; Roberts G; Rudy D; Krauss-Opatz B; Köhler L; Zeidler H; Schumacher HR; Whittum-Hudson JA; Hudson AP
    Microbes Infect; 2002 Jan; 4(1):13-22. PubMed ID: 11825770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis.
    Nans A; Ford C; Hayward RD
    Microbes Infect; 2015; 17(11-12):727-31. PubMed ID: 26320027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.