BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12850416)

  • 1. Analysis of ecstasy tablets: comparison of reflectance and transmittance near infrared spectroscopy.
    Schneider RC; Kovar KA
    Forensic Sci Int; 2003 Jul; 134(2-3):187-95. PubMed ID: 12850416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening experiments of ecstasy street samples using near infrared spectroscopy.
    Sondermann N; Kovar KA
    Forensic Sci Int; 1999 Dec; 106(3):147-56. PubMed ID: 10680063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining attenuated total reflectance- infrared spectroscopy and chemometrics for the identification and the dosage estimation of MDMA tablets.
    Deconinck E; Van Campenhout R; Aouadi C; Canfyn M; Bothy JL; Gremeaux L; Blanckaert P; Courselle P
    Talanta; 2019 Apr; 195():142-151. PubMed ID: 30625524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a method for the determination of caffeine anhydrate in various designed intact tablets [correction of tables] by near-infrared spectroscopy: a comparison between reflectance and transmittance technique.
    Ito M; Suzuki T; Yada S; Kusai A; Nakagami H; Yonemochi E; Terada K
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):819-27. PubMed ID: 18508223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical profiling of 3,4-methylenedioxymethamphetamine (MDMA) tablets seized in Hong Kong.
    Cheng WC; Poon NL; Chan MF
    J Forensic Sci; 2003 Nov; 48(6):1249-59. PubMed ID: 14640267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Library Search-Based Screening System for 3,4-Methylenedioxymethamphetamine in Ecstasy Tablets Using a Portable Near-Infrared Spectrometer.
    Tsujikawa K; Yamamuro T; Kuwayama K; Kanamori T; Iwata YT; Miyamoto K; Kasuya F; Inoue H
    J Forensic Sci; 2016 Sep; 61(5):1208-14. PubMed ID: 27362667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assay of effervescent tablets by near-infrared spectroscopy in transmittance and reflectance mode: acetylsalicylic acid in mono and combination formulations.
    Merckle P; Kovar KA
    J Pharm Biomed Anal; 1998 Jul; 17(3):365-74. PubMed ID: 9656145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-phase extraction for profiling of ecstasy tablets.
    Rashed AM; Anderson RA; King LA
    J Forensic Sci; 2000 Mar; 45(2):413-7. PubMed ID: 10782963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous determination of the impurity and radial tensile strength of reduced glutathione tablets by a high selective NIR-PLS method.
    Li J; Jiang Y; Fan Q; Chen Y; Wu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():278-84. PubMed ID: 24556136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near infrared spectroscopic transmittance measurements for pharmaceutical powder mixtures.
    Sánchez-Paternina A; Román-Ospino AD; Martínez M; Mercado J; Alonso C; Romañach RJ
    J Pharm Biomed Anal; 2016 May; 123():120-7. PubMed ID: 26895497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of a high-performance liquid chromatography method using monolithic columns for the analysis of ecstasy tablets.
    Mc Fadden K; Gillespie J; Carney B; O'Driscoll D
    J Chromatogr A; 2006 Jul; 1120(1-2):54-60. PubMed ID: 16466734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution testing of isoniazid, rifampicin, pyrazinamide and ethambutol tablets using near-infrared spectroscopy (NIRS) and multivariate calibration.
    de Oliveira Neves AC; Soares GM; de Morais SC; da Costa FS; Porto DL; de Lima KM
    J Pharm Biomed Anal; 2012 Jan; 57():115-9. PubMed ID: 21908131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of "Ecstasy" by capillary electrophoresis.
    Frost M; Köhler H; Blaschke G
    Int J Legal Med; 1996; 109(2):53-7. PubMed ID: 8912047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-site forensic analysis of colored seized materials: Detection of brown heroin and MDMA-tablets by a portable NIR spectrometer.
    Kranenburg RF; Ramaker HJ; van Asten AC
    Drug Test Anal; 2022 Oct; 14(10):1762-1772. PubMed ID: 35968822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of simulated precompression, compression pressure and tableting speed on an offline diffuse transmittance and reflectance near-infrared spectral information of model intact caffeine tablets.
    Vranic BZ; Vandamme TF
    Pharm Dev Technol; 2015 Jan; 20(1):90-8. PubMed ID: 25118591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The content of ecstasy tablets: implications for the study of their long-term effects.
    Cole JC; Bailey M; Sumnall HR; Wagstaff GF; King LA
    Addiction; 2002 Dec; 97(12):1531-6. PubMed ID: 12472637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of reflectance and transmittance near-infrared spectroscopic techniques in determining drug content in intact tablets.
    Thosar SS; Forbess RA; Ebube NK; Chen Y; Rubinovitz RL; Kemper MS; Reier GE; Wheatley TA; Shukla AJ
    Pharm Dev Technol; 2001; 6(1):19-29. PubMed ID: 11247272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an HPLC method for quantitation of MDMA in tablets.
    Müller IB; Windberg CN
    J Chromatogr Sci; 2005 Sep; 43(8):434-7. PubMed ID: 16212786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing sensitivity and precision on NIR reflectance determination of an API at low concentration: Application to an hormonal preparation.
    Arruabarrena J; Coello J; Maspoch S
    J Pharm Biomed Anal; 2012 Feb; 60():59-64. PubMed ID: 22100403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composition profiling of seized ecstasy tablets by Raman spectroscopy.
    Bell SE; Burns DT; Dennis AC; Matchett LJ; Speers JS
    Analyst; 2000 Oct; 125(10):1811-5. PubMed ID: 11070550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.