These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12850729)

  • 1. The NMR microimaging studies of the interplay of mass transport and chemical reaction in porous media.
    Koptyug IV; Lysova AA; Matveev AV; Ilyina LY; Sagdeev RZ; Parmon VN
    Magn Reson Imaging; 2003; 21(3-4):337-43. PubMed ID: 12850729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional MRI and NMR spectroscopy of an operating gas-liquid-solid catalytic reactor.
    Koptyug IV; Lysova AA; Kulikov AV; Kirillov VA; Parmon VN; Sagdeev RZ
    Magn Reson Imaging; 2005 Feb; 23(2):221-5. PubMed ID: 15833616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of porous media by thermally polarized gas NMR: current status.
    Beyea SD; Codd SL; Kuethe DO; Fukushima E
    Magn Reson Imaging; 2003; 21(3-4):201-5. PubMed ID: 12850708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed field gradient NMR measurements of probability distribution of displacement under flow in sphere packings.
    Lebon L; Leblond J; Hulin JP; Martys NS; Schwartz LM
    Magn Reson Imaging; 1996; 14(7-8):989-91. PubMed ID: 8970131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced (13)C PFG NMR for the study of hydrodynamic dispersion in porous media.
    Akpa BS; Holland DJ; Sederman AJ; Johns ML; Gladden LF
    J Magn Reson; 2007 May; 186(1):160-5. PubMed ID: 17320440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent velocities in porous media dispersive flow.
    Callaghan PT; Khrapitchev AA
    Magn Reson Imaging; 2001; 19(3-4):301-5. PubMed ID: 11445303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR imaging of the distribution of the liquid phase in a catalyst pellet during alpha-methylstyrene evaporation accompanied by its vapor-phase hydrogenation.
    Koptyug IV; Kulikov AV; Lysova AA; Kirillov VA; Parmon VN; Sagdeev RZ
    J Am Chem Soc; 2002 Aug; 124(33):9684-5. PubMed ID: 12175208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion NMR methods applied to xenon gas for materials study.
    Mair RW; Rosen MS; Wang R; Cory DG; Walsworth RL
    Magn Reson Chem; 2002 Dec; 40(13):S29-39. PubMed ID: 12807139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophoretic NMR studies of electrical transport in fluid-filled porous systems.
    Holz M; Heil SR; Schwab IA
    Magn Reson Imaging; 2001; 19(3-4):457-63. PubMed ID: 11445330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow and transport studies in (non)consolidated porous (bio)systems consisting of solid or porous beads by PFG NMR.
    Van As H; Palstra W; Tallarek U; Van Dusschoten D
    Magn Reson Imaging; 1998; 16(5-6):569-73. PubMed ID: 9803911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of water flow in porous media by magnetic resonance imaging microscopy.
    Deurer M; Vogeler I; Khrapitchev A; Scotter D
    J Environ Qual; 2002; 31(2):487-93. PubMed ID: 11931438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-gradient pulse investigations of fluid transport in porous media.
    Stapf S; Blümich B
    Magn Reson Imaging; 2001; 19(3-4):385-9. PubMed ID: 11445316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring bacterially induced calcite precipitation in porous media using magnetic resonance imaging and flow measurements.
    Sham E; Mantle MD; Mitchell J; Tobler DJ; Phoenix VR; Johns ML
    J Contam Hydrol; 2013 Sep; 152():35-43. PubMed ID: 23872026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porous media characterization by PFG and IMFG NMR.
    Mutina AR; Skirda VD
    J Magn Reson; 2007 Sep; 188(1):122-8. PubMed ID: 17643327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of fluid flow through porous media using three-dimensional microimaging and pulsed gradient stimulated echo NMR.
    Manz B; Alexander P; Warren PB; Gladden LF
    Magn Reson Imaging; 1998; 16(5-6):673-5. PubMed ID: 9803937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the velocity acceleration factor for colloidal transport in porous media using NMR.
    Creber SA; Pintelon TR; Johns ML
    J Colloid Interface Sci; 2009 Nov; 339(1):168-74. PubMed ID: 19660763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using NMR displacement imaging to characterize electroosmotic flow in porous media.
    Tallarek U; Scheenen TW; de Jager PA; Van As H
    Magn Reson Imaging; 2001; 19(3-4):453-6. PubMed ID: 11445329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advection of chemical reaction fronts in a porous medium.
    Koptyug IV; Zhivonitko VV; Sagdeev RZ
    J Phys Chem B; 2008 Jan; 112(4):1170-6. PubMed ID: 18173259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric field driven flow in natural porous media.
    Bendel P; Bernardo M; Dunsmuir JH; Thomann H
    Magn Reson Imaging; 2003; 21(3-4):321-7. PubMed ID: 12850726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.