BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12851051)

  • 21. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres.
    Xu Q; Crossley A; Czernuszka J
    J Pharm Sci; 2009 Jul; 98(7):2377-89. PubMed ID: 19009589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New strategies for the microencapsulation of tetanus vaccine.
    Schwendeman SP; Tobío M; Joworowicz M; Alonso MJ; Langer R
    J Microencapsul; 1998; 15(3):299-318. PubMed ID: 9608394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein release from poly(epsilon-caprolactone) microspheres prepared by melt encapsulation and solvent evaporation techniques: a comparative study.
    Jameela SR; Suma N; Jayakrishnan A
    J Biomater Sci Polym Ed; 1997; 8(6):457-66. PubMed ID: 9151193
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants.
    Blanco D; Alonso MJ
    Eur J Pharm Biopharm; 1998 May; 45(3):285-94. PubMed ID: 9653633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vancomycin biodegradable poly(lactide-co-glycolide) microparticles for bone implantation. Influence of the formulation parameters on the size, morphology, drug loading and in vitro release.
    Billon A; Chabaud L; Gouyette A; Bouler JM; Merle C
    J Microencapsul; 2005 Dec; 22(8):841-52. PubMed ID: 16423756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The parameters influencing the morphology of poly(ɛ-caprolactone) microspheres and the resulting release of encapsulated drugs.
    Bile J; Bolzinger MA; Vigne C; Boyron O; Valour JP; Fessi H; Chevalier Y
    Int J Pharm; 2015 Oct; 494(1):152-66. PubMed ID: 26235922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(epsilon-caprolactone) microparticles formed by the emulsion-evaporation method: effect of the variables of the different steps of the process on their size.
    Gutiérrez-Paúls L; González-Alvarez I; Lareo Barone M; Gil-Alegre ME; Torres-Suárez AI
    Pharmazie; 2007 Nov; 62(11):864-8. PubMed ID: 18065104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of 3,4-diaminopyridine microparticles by solvent-evaporation methods.
    Gibaud S; Bonneville A; Astier A
    Int J Pharm; 2002 Aug; 242(1-2):197-201. PubMed ID: 12176246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tunable sustained release drug delivery system based on mononuclear aqueous core-polymer shell microcapsules.
    Abulateefeh SR; Alkawareek MY; Alkilany AM
    Int J Pharm; 2019 Mar; 558():291-298. PubMed ID: 30641178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.
    Ansary RH; Rahman MM; Awang MB; Katas H; Hadi H; Doolaanea AA
    Drug Deliv Transl Res; 2016 Jun; 6(3):308-18. PubMed ID: 26817478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preparation of biodegradable poly(+/-)lactide microparticles using a spray-drying technique.
    Bodmeier R; Chen HG
    J Pharm Pharmacol; 1988 Nov; 40(11):754-7. PubMed ID: 2907552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradable recombinant human erythropoietin loaded microspheres prepared from linear and star-branched block copolymers: influence of encapsulation technique and polymer composition on particle characteristics.
    Pistel KF; Bittner B; Koll H; Winter G; Kissel T
    J Control Release; 1999 Jun; 59(3):309-25. PubMed ID: 10332063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hyperbranched polymers as drug carriers: microencapsulation and release kinetics.
    Suttiruengwong S; Rolker J; Smirnova I; Arlt W; Seiler M; Lüderitz L; Pérez de Diego Y; Jansens PJ
    Pharm Dev Technol; 2006 Feb; 11(1):55-70. PubMed ID: 16544909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Small-molecule release from poly(D,L-lactide)/poly(D,L-lactide-co-glycolide) composite microparticles.
    Pollauf EJ; Kim KK; Pack DW
    J Pharm Sci; 2005 Sep; 94(9):2013-22. PubMed ID: 16052542
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microencapsulation of puerarin nanoparticles by poly(l-lactide) in a supercritical CO(2) process.
    Chen AZ; Li Y; Chau FT; Lau TY; Hu JY; Zhao Z; Mok DK
    Acta Biomater; 2009 Oct; 5(8):2913-9. PubMed ID: 19463980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate.
    Mata E; Igartua M; Patarroyo ME; Pedraz JL; Hernández RM
    Eur J Pharm Sci; 2011 Sep; 44(1-2):32-40. PubMed ID: 21699977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasonic atomization for spray drying: a versatile technique for the preparation of protein loaded biodegradable microspheres.
    Bittner B; Kissel T
    J Microencapsul; 1999; 16(3):325-41. PubMed ID: 10340218
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Another paradigm in solvent extraction-based microencapsulation technologies.
    Im HY; Kim J; Sah H
    Biomacromolecules; 2010 Mar; 11(3):776-86. PubMed ID: 20131759
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Encapsulation of azithromycin into polymeric microspheres by reduced pressure-solvent evaporation method.
    Li X; Chang S; Du G; Li Y; Gong J; Yang M; Wei Z
    Int J Pharm; 2012 Aug; 433(1-2):79-88. PubMed ID: 22583850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polymeric microspheres prepared by spraying into compressed carbon dioxide.
    Bodmeier R; Wang H; Dixon DJ; Mawson S; Johnston KP
    Pharm Res; 1995 Aug; 12(8):1211-7. PubMed ID: 7494836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.