These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 12851766)

  • 1. Positive assortative mating with selection restrictions on group coancestry enhances gain while conserving genetic diversity in long-term forest tree breeding.
    Rosvall O; Mullin TJ
    Theor Appl Genet; 2003 Aug; 107(4):629-42. PubMed ID: 12851766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Open-nucleus breeding strategies compared with population-wide positive assortative mating: I. Equal distribution of testing efforts.
    Lstibůrek M; Mullin TJ; Lindgren D; Rosvall O
    Theor Appl Genet; 2004 Oct; 109(6):1196-1203. PubMed ID: 15278282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive assortative mating with family size as a function of predicted parental breeding values.
    Lstiburek M; Mullin TJ; Mackay TF; Huber D; Li B
    Genetics; 2005 Nov; 171(3):1311-20. PubMed ID: 15965252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of selection contribution and mate allocations in monoecious tree breeding populations.
    Hallander J; Waldmann P
    BMC Genet; 2009 Nov; 10():70. PubMed ID: 19895684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open-nucleus breeding strategies compared with population-wide positive assortative mating: II. Unequal distribution of testing effort.
    Lstibůrek M; Mullin TJ; Lindgren D; Rosvall O
    Theor Appl Genet; 2004 Oct; 109(6):1169-77. PubMed ID: 15290046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of inbreeding on coastal Douglas fir growth and yield in operational plantations: a model-based approach.
    Wang T; Aitken SN; Woods JH; Polsson K; Magnussen S
    Theor Appl Genet; 2004 Apr; 108(6):1162-71. PubMed ID: 15067403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-random mating for selection with restricted rates of inbreeding and overlapping generations.
    Sonesson AK; Meuwissen TH
    Genet Sel Evol; 2002; 34(1):23-39. PubMed ID: 11929623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimum contribution selection in large general tree breeding populations with an application to Scots pine.
    Hallander J; Waldmann P
    Theor Appl Genet; 2009 Apr; 118(6):1133-42. PubMed ID: 19183858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of Seven Tree Breeding Strategies Under Conditions of Inbreeding Depression.
    Wu HX; Hallingbäck HR; Sánchez L
    G3 (Bethesda); 2016 Jan; 6(3):529-40. PubMed ID: 26739644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of genomic selection on genetic improvement, inbreeding, and merit of young versus proven bulls.
    de Roos AP; Schrooten C; Veerkamp RF; van Arendonk JA
    J Dairy Sci; 2011 Mar; 94(3):1559-67. PubMed ID: 21338821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AlphaMate: a program for optimizing selection, maintenance of diversity and mate allocation in breeding programs.
    Gorjanc G; Hickey JM
    Bioinformatics; 2018 Oct; 34(19):3408-3411. PubMed ID: 29722792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrospective selection of elite parent trees using paternity testing with microsatellite markers: an alternative short term breeding tactic for Eucalyptus.
    Grattapaglia D; Ribeiro VJ; Rezende GD
    Theor Appl Genet; 2004 Jun; 109(1):192-9. PubMed ID: 15004676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response to selection while maximizing genetic variance in small populations.
    Cervantes I; Gutiérrez JP; Meuwissen TH
    Genet Sel Evol; 2016 Sep; 48(1):69. PubMed ID: 27649906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sire mating patterns on future genetic merit and inbreeding in a closed beef cattle population.
    Oyama K; Nojima M; Shojo M; Fukushima M; Anada K; Mukai F
    J Anim Breed Genet; 2007 Apr; 124(2):73-80. PubMed ID: 17488357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of genomic information on optimal contribution selection in livestock breeding programs.
    Clark SA; Kinghorn BP; Hickey JM; van der Werf JH
    Genet Sel Evol; 2013 Oct; 45(1):44. PubMed ID: 24171942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Management of diversity and inbreeding when importing new stock into an inbred population.
    Kinghorn B; Kinghorn A
    J Hered; 2023 Aug; 114(5):492-503. PubMed ID: 37119054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mating structures for genomic selection breeding programs in aquaculture.
    Sonesson AK; Ødegård J
    Genet Sel Evol; 2016 Jun; 48(1):46. PubMed ID: 27342705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mating animals by minimising the covariance between ancestral contributions generates less inbreeding without compromising genetic gain in breeding schemes with truncation selection.
    Henryon M; Sørensen AC; Berg P
    Animal; 2009 Oct; 3(10):1339-46. PubMed ID: 22444927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The advantage of factorial mating under selection is uncovered by deterministically predicted rates of inbreeding.
    Sørensen AC; Berg P; Woolliams JA
    Genet Sel Evol; 2005; 37(1):57-81. PubMed ID: 15588568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.