These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 12851792)

  • 1. Micropatterned "adherent/repellent" glass surfaces for studying the spreading kinetics of individual red blood cells onto protein-decorated substrates.
    Cuvelier D; Rossier O; Bassereau P; Nassoy P
    Eur Biophys J; 2003 Jul; 32(4):342-54. PubMed ID: 12851792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enforced detachment of red blood cells adhering to surfaces: statics and dynamics.
    Pierrat S; Brochard-Wyart F; Nassoy P
    Biophys J; 2004 Oct; 87(4):2855-69. PubMed ID: 15454476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning axonal guidance molecules using a novel strategy for microcontact printing.
    Oliva AA; James CD; Kingman CE; Craighead HG; Banker GA
    Neurochem Res; 2003 Nov; 28(11):1639-48. PubMed ID: 14584818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mylar and Teflon-AF as cell culture substrates for studying endothelial cell adhesion.
    Anamelechi CC; Truskey GA; Reichert WM
    Biomaterials; 2005 Dec; 26(34):6887-96. PubMed ID: 15990164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-assembly of functionalized particulate monolayer on C18-derivatized SiO2 surfaces.
    Huang TT; Geng T; Akin D; Chang WJ; Sturgis J; Bashir R; Bhunia AK; Robinson JP; Ladisch MR
    Biotechnol Bioeng; 2003 Aug; 83(4):416-27. PubMed ID: 12800136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple approach to micropattern cells on common culture substrates by tuning substrate wettability.
    Tan JL; Liu W; Nelson CM; Raghavan S; Chen CS
    Tissue Eng; 2004; 10(5-6):865-72. PubMed ID: 15265304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contactless laser-assisted patterning of surfaces for bio-adhesive microarrays.
    Perez-Hernandez H; Paumer T; Pompe T; Werner C; Lasagni AF
    Biointerphases; 2012 Dec; 7(1-4):35. PubMed ID: 22589077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micropatterning of poly(ethylene glycol) diacrylate hydrogels.
    Ali S; Cuchiara ML; West JL
    Methods Cell Biol; 2014; 121():105-19. PubMed ID: 24560506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micropatterned surfaces for controlling cell adhesion and rolling under flow.
    Nalayanda DD; Kalukanimuttam M; Schmidtke DW
    Biomed Microdevices; 2007 Apr; 9(2):207-14. PubMed ID: 17160704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion.
    VandeVondele S; Vörös J; Hubbell JA
    Biotechnol Bioeng; 2003 Jun; 82(7):784-90. PubMed ID: 12701144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma-assisted surface chemical patterning for single-cell culture.
    Cheng Q; Li S; Komvopoulos K
    Biomaterials; 2009 Sep; 30(25):4203-10. PubMed ID: 19477506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of contact-printing based poly(ethylene glycol) gradient surfaces with micrometer-sized steps.
    Cai Y; Yun YH; Newby BM
    Colloids Surf B Biointerfaces; 2010 Jan; 75(1):115-22. PubMed ID: 19744840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-mediated two-dimensional colloidal crystallization above different attractive surfaces.
    Jahn S; Geerts N; Eiser E
    Langmuir; 2010 Nov; 26(22):16921-7. PubMed ID: 20925372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micropatterning of polymer brushes: grafting from dewetting polymer films for biological applications.
    Telford AM; Meagher L; Glattauer V; Gengenbach TR; Easton CD; Neto C
    Biomacromolecules; 2012 Sep; 13(9):2989-96. PubMed ID: 22881125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilized culture of nonadherent cells on an oleyl poly(ethylene glycol) ether-modified surface.
    Kato K; Umezawa K; Funeriu DP; Miyake M; Miyake J; Nagamune T
    Biotechniques; 2003 Nov; 35(5):1014-8, 1020-1. PubMed ID: 14628675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurite outgrowth on well-characterized surfaces: preparation and characterization of chemically and spatially controlled fibronectin and RGD substrates with good bioactivity.
    Zhang Z; Yoo R; Wells M; Beebe TP; Biran R; Tresco P
    Biomaterials; 2005 Jan; 26(1):47-61. PubMed ID: 15193880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micropatterned biofunctional lubricant-infused surfaces promote selective localized cell adhesion and patterning.
    Imani SM; Badv M; Shakeri A; Yousefi H; Yip D; Fine C; Didar TF
    Lab Chip; 2019 Oct; 19(19):3228-3237. PubMed ID: 31468050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frictional characteristics of erythrocytes on coated glass plates subject to inclined centrifugal forces.
    Kandori T; Hayase T; Inoue K; Funamoto K; Takeno T; Ohta M; Takeda M; Shirai A
    J Biomech Eng; 2008 Oct; 130(5):051007. PubMed ID: 19045514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurite guidance on protein micropatterns generated by a piezoelectric microdispenser.
    Gustavsson P; Johansson F; Kanje M; Wallman L; Linsmeier CE
    Biomaterials; 2007 Feb; 28(6):1141-51. PubMed ID: 17109955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mussel-inspired anchoring for patterning cells using polydopamine.
    Sun K; Xie Y; Ye D; Zhao Y; Cui Y; Long F; Zhang W; Jiang X
    Langmuir; 2012 Jan; 28(4):2131-6. PubMed ID: 22085048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.