These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 12851824)

  • 41. [Effect of extremity cuffs as a countermeasure against the cardiovascular deconditioning during 21 d head-down bedrest].
    Jiang CL; Jiang SZ; Li JJ; Yao YJ; Wu XY; Sun XQ
    Space Med Med Eng (Beijing); 1999 Oct; 12(5):364-7. PubMed ID: 12022183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of depressed myocardial contractility induced by microgravity on cardiovascular response to orthostatic stress: a computer simulation.
    Hao WY; Bai J; Zhang WY; Wu XY; Zhang LF
    Comput Cardiol; 2001; 28():349-52. PubMed ID: 14640094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiovascular regulation during long-duration spaceflights to the International Space Station.
    Hughson RL; Shoemaker JK; Blaber AP; Arbeille P; Greaves DK; Pereira-Junior PP; Xu D
    J Appl Physiol (1985); 2012 Mar; 112(5):719-27. PubMed ID: 22134699
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cardiovascular physiology. Effects of microgravity.
    Convertino V; Hoffler GW
    J Fla Med Assoc; 1992 Aug; 79(8):517-24. PubMed ID: 1402772
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A human-powered, small radius centrifuge for space application: a design study.
    Meeker LJ; Isdahl WM; Helduser JW
    SAFE J; 1996 Jan; 26(1):34-43. PubMed ID: 11539367
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Twenty four hours head-down tilt decreases arterial baroreflex function in conscious rat.
    Martel E; Champeroux P; Lacolley P; Cuche JL; Safar ME
    Physiologist; 1993 Feb; 36(1 Suppl):S24-5. PubMed ID: 11538523
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The progress in research on changes of central venous pressure under simulated weightlessness and microgravity].
    Wang DS; Sun L; Xiang QL; Ren W
    Space Med Med Eng (Beijing); 1999 Dec; 12(6):459-63. PubMed ID: 12434816
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of daily 2-Gz load on human cardiovascular function during weightlessness simulation using 4-day head-down bed rest.
    Sasaki T; Iwasaki KI; Hirayanagi K; Yamaguchi N; Miyamoto A; Yajima K
    Uchu Koku Kankyo Igaku; 1999 Sep; 36(3):113-23. PubMed ID: 11543318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [A simulated study of effects of simulated hypovolemia on cardiovascular response to orthostatic stress].
    Hao WY; Zhang LF; Wu XY; Zhang WY
    Space Med Med Eng (Beijing); 2000 Aug; 13(4):259-62. PubMed ID: 11892747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [A simulation study of effects of depressed myocardial contractility on cardiovascular response to lower body negative pressure].
    Hao WY; Zhang LF; Wu XY; Bai J
    Space Med Med Eng (Beijing); 2001 Aug; 14(4):253-6. PubMed ID: 11681336
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cardiovascular deconditioning effects of long-term simulated weightlessness in rats.
    Zhang LF; Chen JE; Ding ZP; Ma J
    Physiologist; 1993 Feb; 36(1 Suppl):S26-7. PubMed ID: 11538524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Comparative evaluation of several methods preventing orthostatic disorders during simulation of the end-of-space-mission factors].
    Baranov VM; Demin EP; Kotov AN; Kolesnikov VI; Mikhaĭlov VM; Ushakov BB; Tikhonov MA
    Aviakosm Ekolog Med; 2003; 37(4):17-23. PubMed ID: 14503183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Cardiovascular functioning during seven days of simulated microgravity in humans using occlusive thigh cuffs].
    Fomina GA; Kotovskaia AR; Arbeille P
    Fiziol Cheloveka; 2003; 29(5):58-64. PubMed ID: 14611085
    [No Abstract]   [Full Text] [Related]  

  • 54. Medical rehabilitation following long-term space missions.
    Vasilyeva TD; Bogomolov VV
    Acta Astronaut; 1991; 23():153-6. PubMed ID: 11537118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Are energy metabolism alterations involved in cardiovascular deconditioning after weightlessness? An hypothesis.
    Blanc S; Somody L; Gharib C
    Pflugers Arch; 2000; 441(2-3 Suppl):R39-47. PubMed ID: 11200978
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Artificial gravity as a countermeasure of physiological deconditioning in space.
    Cardús D; McTaggart WG
    Adv Space Res; 1994; 14(8):409-14. PubMed ID: 11537949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Salt-loading and simulated microgravity on baroreflex responsiveness in rats.
    Bayorh MA; Socci RR; Wang M; Emmett N; Thierry-Palmer M
    J Gravit Physiol; 2000 Dec; 7(3):23-9. PubMed ID: 12124182
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human tolerance to acceleration after exposure to weightlessness.
    Kotovskaya AR
    Life Sci Space Res; 1976; 14():129-35. PubMed ID: 11977270
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microgravity decreases heart rate and arterial pressure in humans.
    Fritsch-Yelle JM; Charles JB; Jones MM; Wood ML
    J Appl Physiol (1985); 1996 Mar; 80(3):910-4. PubMed ID: 8964756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. +Gx tolerance by females following long-duration simulated and spaceflight microgravity.
    Koloteva MI; Lukianiuk VY; Vil-Viliams IF; Kotovskaya AR
    J Gravit Physiol; 2004 Jul; 11(2):P101-2. PubMed ID: 16235434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.