BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 12852849)

  • 41. Evolution and development: anchors away!
    Haag ES; True JR
    Curr Biol; 2007 Mar; 17(5):R172-4. PubMed ID: 17339017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EGF signaling overcomes a uterine cell death associated with temporal mis-coordination of organogenesis within the C. elegans egg-laying apparatus.
    Huang L; Hanna-Rose W
    Dev Biol; 2006 Dec; 300(2):599-611. PubMed ID: 16963018
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Forces drive basement membrane invasion in
    Cáceres R; Bojanala N; Kelley LC; Dreier J; Manzi J; Di Federico F; Chi Q; Risler T; Testa I; Sherwood DR; Plastino J
    Proc Natl Acad Sci U S A; 2018 Nov; 115(45):11537-11542. PubMed ID: 30348801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. sem-4 promotes vulval cell-fate determination in Caenorhabditis elegans through regulation of lin-39 Hox.
    Grant K; Hanna-Rose W; Han M
    Dev Biol; 2000 Aug; 224(2):496-506. PubMed ID: 10926783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Caenorhabditis elegans lin-12 gene mediates induction of ventral uterine specialization by the anchor cell.
    Newman AP; White JG; Sternberg PW
    Development; 1995 Feb; 121(2):263-71. PubMed ID: 7768171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MIG-10 (Lamellipodin) stabilizes invading cell adhesion to basement membrane and is a negative transcriptional target of EGL-43 in C. elegans.
    Wang L; Shen W; Lei S; Matus D; Sherwood D; Wang Z
    Biochem Biophys Res Commun; 2014 Sep; 452(3):328-33. PubMed ID: 25148942
    [TBL] [Abstract][Full Text] [Related]  

  • 47. UNC-6 (netrin) orients the invasive membrane of the anchor cell in C. elegans.
    Ziel JW; Hagedorn EJ; Audhya A; Sherwood DR
    Nat Cell Biol; 2009 Feb; 11(2):183-9. PubMed ID: 19098902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A DNA replication-independent function of pre-replication complex genes during cell invasion in C. elegans.
    Lattmann E; Deng T; Walser M; Widmer P; Rexha-Lambert C; Prasad V; Eichhoff O; Daube M; Dummer R; Levesque MP; Hajnal A
    PLoS Biol; 2022 Feb; 20(2):e3001317. PubMed ID: 35192608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. lin-35 Rb acts in the major hypodermis to oppose ras-mediated vulval induction in C. elegans.
    Myers TR; Greenwald I
    Dev Cell; 2005 Jan; 8(1):117-23. PubMed ID: 15621535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of Caenorhabditis elegans vulval induction by gap-1 and by let-23 receptor tyrosine kinase.
    Hajnal A; Whitfield CW; Kim SK
    Genes Dev; 1997 Oct; 11(20):2715-28. PubMed ID: 9334333
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Post-transcriptional regulation of the E/Daughterless ortholog HLH-2, negative feedback, and birth order bias during the AC/VU decision in C. elegans.
    Karp X; Greenwald I
    Genes Dev; 2003 Dec; 17(24):3100-11. PubMed ID: 14701877
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coordinated lumen contraction and expansion during vulval tube morphogenesis in Caenorhabditis elegans.
    Farooqui S; Pellegrino MW; Rimann I; Morf MK; Müller L; Fröhli E; Hajnal A
    Dev Cell; 2012 Sep; 23(3):494-506. PubMed ID: 22975323
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction.
    Tan PB; Lackner MR; Kim SK
    Cell; 1998 May; 93(4):569-80. PubMed ID: 9604932
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene expression markers for Caenorhabditis elegans vulval cells.
    Inoue T; Sherwood DR; Aspöck G; Butler JA; Gupta BP; Kirouac M; Wang M; Lee PY; Kramer JM; Hope I; Bürglin TR; Sternberg PW
    Mech Dev; 2002 Dec; 119 Suppl 1():S203-9. PubMed ID: 14516686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Signal transduction during C. elegans vulval development: a NeverEnding story.
    Schmid T; Hajnal A
    Curr Opin Genet Dev; 2015 Jun; 32():1-9. PubMed ID: 25677930
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Expression and imaging of fluorescent proteins in the C. elegans gonad and early embryo.
    Green RA; Audhya A; Pozniakovsky A; Dammermann A; Pemble H; Monen J; Portier N; Hyman A; Desai A; Oegema K
    Methods Cell Biol; 2008; 85():179-218. PubMed ID: 18155464
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development.
    Yoo AS; Bais C; Greenwald I
    Science; 2004 Jan; 303(5658):663-6. PubMed ID: 14752159
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression pattern and first functional characterization of riok-1 in Caenorhabditis elegans.
    Weinberg F; Schulze E; Fatouros C; Schmidt E; Baumeister R; Brummer T
    Gene Expr Patterns; 2014 Jul; 15(2):124-34. PubMed ID: 24929033
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protein kinase VRK-1 regulates cell invasion and EGL-17/FGF signaling in Caenorhabditis elegans.
    Klerkx EP; Alarcón P; Waters K; Reinke V; Sternberg PW; Askjaer P
    Dev Biol; 2009 Nov; 335(1):12-21. PubMed ID: 19679119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two C. elegans histone methyltransferases repress lin-3 EGF transcription to inhibit vulval development.
    Andersen EC; Horvitz HR
    Development; 2007 Aug; 134(16):2991-9. PubMed ID: 17634190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.