BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1285296)

  • 1. The lateral separation of contacts on erythrocytes agglutinated by polylysine.
    Thomas NE; Coakley WT; Akay G
    Cell Biophys; 1992; 20(2-3):125-47. PubMed ID: 1285296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of polymer concentration and molecular weight and of enzymic glycocalyx modification on erythrocyte interaction in dextran solutions.
    Baker AJ; Coakley WT; Gallez D
    Eur Biophys J; 1993; 22(1):53-62. PubMed ID: 7685691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially periodic discrete contact regions in polylysine-induced erythrocyte-yeast adhesion.
    Hewison LA; Coakley WT; Meyer HW
    Cell Biophys; 1988 Oct; 13(2):151-7. PubMed ID: 2464435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial instability and the agglutination of erythrocytes by polylysine.
    Coakley WT; Hewison LA; Tilley D
    Eur Biophys J; 1985; 13(2):123-30. PubMed ID: 4085415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane-membrane interactions: parallel membranes or patterned discrete contacts.
    Darmani H; Coakley WT
    Biochim Biophys Acta; 1990 Jan; 1021(2):182-90. PubMed ID: 1689180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time observations of polylysine, dextran and polyethylene glycol induced mutual adhesion of erythrocytes held in suspension in an ultrasonic standing wave field.
    Tilley D; Coakley WT; Gould RK; Payne SE; Hewison LA
    Eur Biophys J; 1987; 14(8):499-507. PubMed ID: 2441984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spreading of wheat germ agglutinin-induced erythrocyte contact by formation of spatially discrete contacts.
    Darmani H; Coakley WT; Hann AC; Brain A
    Cell Biophys; 1990 Jun; 16(3):105-26. PubMed ID: 1698548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contact patterns in concanavalin A agglutinated erythrocytes.
    Darmani H; Coakley WT
    Cell Biophys; 1991 Feb; 18(1):1-13. PubMed ID: 1725500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic evaluation of aggregation and agglutination of red blood cells.
    Kaibara M; Date M; Fukada E
    Biorheology Suppl; 1984; 1():43-7. PubMed ID: 6591997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of successive modes of erythrocyte stability and instability in the presence of various polymers.
    van Oss CJ; Coakley WT
    Cell Biophys; 1988 Oct; 13(2):141-50. PubMed ID: 2464434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localized contact formation by erythrocyte membranes: electrostatic effects.
    Thomas NE; Coakley WT
    Biophys J; 1995 Oct; 69(4):1387-401. PubMed ID: 8534809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Polylysine on Blood Clotting, and Red Blood Cell Morphology, Aggregation and Hemolysis.
    Zhang W; Liu F
    J Nanosci Nanotechnol; 2017 Jan; 17(1):251-55. PubMed ID: 29620337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic strength dependence of localized contact formation between membranes: nonlinear theory and experiment.
    Coakley WT; Gallez D; de Souza ER; Gauci H
    Biophys J; 1999 Aug; 77(2):817-28. PubMed ID: 10423428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging of the human erythrocyte.
    Greenwalt TJ; Steane EA; Lau FO; Sweeney-Hammond K
    Prog Clin Biol Res; 1980; 43():195-212. PubMed ID: 7422685
    [No Abstract]   [Full Text] [Related]  

  • 15. Cellular recognition by rat liver cells of neuraminidase-treated erythrocytes. Demonstration and analysis of cell contacts.
    Kolb H; Schudt C; Kolb-Bachofen V; Kolb HA
    Exp Cell Res; 1978 May; 113(2):319-25. PubMed ID: 233768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte agglutination by wheat germ agglutinin: ionic strength dependence of the contact seam topology.
    Rolfe M; Parmar A; Hoy TG; Coakley WT
    Mol Membr Biol; 2001; 18(2):169-76. PubMed ID: 11463209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phagocytosis by Acanthamoeba castellanii: ionic strength dependence of the probability of cell attachment; ingestion and contact seam morphology.
    Obaray N; Coakley WT
    Colloids Surf B Biointerfaces; 2001 Oct; 22(2):127-140. PubMed ID: 11451659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell partitioning in two-polymer aqueous phase systems and cell electrophoresis in aqueous polymer solutions. Human and rat young and old red blood cells.
    Walter H; Widen KE
    Biochim Biophys Acta; 1994 Aug; 1194(1):131-7. PubMed ID: 7521213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning electron microscopical characterization of La3+- and concanavalin A-induced aggregations of untreated and neuraminidase-treated human erythrocytes.
    Lerche D; Augsten K; Hessel E
    Exp Pathol; 1981; 20(3):156-62. PubMed ID: 7338276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red blood cell adhesion can be reduced by non-reactive macromolecules.
    Zhang Z; Meiselman HJ; Neu B
    Colloids Surf B Biointerfaces; 2019 Feb; 174():168-173. PubMed ID: 30453135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.