BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 12853133)

  • 1. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes.
    Casacuberta JM; Santiago N
    Gene; 2003 Jun; 311():1-11. PubMed ID: 12853133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species.
    Liu Y; Tahir Ul Qamar M; Feng JW; Ding Y; Wang S; Wu G; Ke L; Xu Q; Chen LL
    BMC Plant Biol; 2019 Apr; 19(1):140. PubMed ID: 30987586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes.
    Wessler SR; Bureau TE; White SE
    Curr Opin Genet Dev; 1995 Dec; 5(6):814-21. PubMed ID: 8745082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Non-LTR retrotransposons: LINEs and SINEs in plant genome].
    Cheng XD; Ling HQ
    Yi Chuan; 2006 Jun; 28(6):731-6. PubMed ID: 16818439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding.
    Venkatesh ; Nandini B
    Mol Biol Rep; 2020 Apr; 47(4):3155-3167. PubMed ID: 32162128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The history and disposition of transposable elements in polyploid Gossypium.
    Hu G; Hawkins JS; Grover CE; Wendel JF
    Genome; 2010 Aug; 53(8):599-607. PubMed ID: 20725147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Plant active LTR retrotransposons: a review].
    Liang L; Zhou M
    Sheng Wu Gong Cheng Xue Bao; 2016 Apr; 32(4):409-429. PubMed ID: 28853263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Lineage-Specific Amplification of Transcription Factor Binding Motifs by Miniature Inverted-Repeat Transposable Elements (MITEs).
    Morata J; Marín F; Payet J; Casacuberta JM
    Genome Biol Evol; 2018 Apr; 10(5):1210-1220. PubMed ID: 29659815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant MITEs: useful tools for plant genetics and genomics.
    Feng Y
    Genomics Proteomics Bioinformatics; 2003 May; 1(2):90-9. PubMed ID: 15626339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla).
    Zhou M; Tao G; Pi P; Zhu Y; Bai Y; Meng X
    Planta; 2016 Oct; 244(4):775-87. PubMed ID: 27160169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational repression by a miniature inverted-repeat transposable element in the 3' untranslated region.
    Shen J; Liu J; Xie K; Xing F; Xiong F; Xiao J; Li X; Xiong L
    Nat Commun; 2017 Mar; 8():14651. PubMed ID: 28256530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposable element contributions to plant gene and genome evolution.
    Bennetzen JL
    Plant Mol Biol; 2000 Jan; 42(1):251-69. PubMed ID: 10688140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.
    Vitte C; Panaud O
    Cytogenet Genome Res; 2005; 110(1-4):91-107. PubMed ID: 16093661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolving fine-grained dynamics of retrotransposons: comparative analysis of inferential methods and genomic resources.
    Choudhury RR; Neuhaus JM; Parisod C
    Plant J; 2017 Jun; 90(5):979-993. PubMed ID: 28244250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic Repeat Finder: A High-Sensitivity Tool for Genome-Wide De Novo Repeat Detection.
    Shi J; Liang C
    Plant Physiol; 2019 Aug; 180(4):1803-1815. PubMed ID: 31152127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of LTR retrotransposons in plant genetic engineering: how to control their transposition in the genome.
    Ramakrishnan M; Papolu PK; Mullasseri S; Zhou M; Sharma A; Ahmad Z; Satheesh V; Kalendar R; Wei Q
    Plant Cell Rep; 2023 Jan; 42(1):3-15. PubMed ID: 36401648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniature inverted-repeat transposable elements: discovery, distribution, and activity.
    Fattash I; Rooke R; Wong A; Hui C; Luu T; Bhardwaj P; Yang G
    Genome; 2013 Sep; 56(9):475-86. PubMed ID: 24168668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Derepression of the plant Chromovirus LORE1 induces germline transposition in regenerated plants.
    Fukai E; Umehara Y; Sato S; Endo M; Kouchi H; Hayashi M; Stougaard J; Hirochika H
    PLoS Genet; 2010 Mar; 6(3):e1000868. PubMed ID: 20221264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes.
    Guermonprez H; Loot C; Casacuberta JM
    Genetics; 2008 Sep; 180(1):83-92. PubMed ID: 18757929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.