These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12853373)

  • 1. Roles of protein kinase A and protein kinase G in synaptic plasticity in the visual cortex.
    Liu S; Rao Y; Daw N
    Cereb Cortex; 2003 Aug; 13(8):864-9. PubMed ID: 12853373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex.
    Beaver CJ; Ji Q; Fischer QS; Daw NW
    Nat Neurosci; 2001 Feb; 4(2):159-63. PubMed ID: 11175876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced ocular dominance plasticity and long-term potentiation in the developing visual cortex of protein kinase A RII alpha mutant mice.
    Rao Y; Fischer QS; Yang Y; McKnight GS; LaRue A; Daw NW
    Eur J Neurosci; 2004 Aug; 20(3):837-42. PubMed ID: 15255994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice.
    Hensch TK; Gordon JA; Brandon EP; McKnight GS; Idzerda RL; Stryker MP
    J Neurosci; 1998 Mar; 18(6):2108-17. PubMed ID: 9482797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blockade of cyclic AMP-dependent protein kinase does not prevent the reverse ocular dominance shift in kitten visual cortex.
    Shimegi S; Fischer QS; Yang Y; Sato H; Daw NW
    J Neurophysiol; 2003 Dec; 90(6):4027-32. PubMed ID: 12944540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity.
    Fischer QS; Beaver CJ; Yang Y; Rao Y; Jakobsdottir KB; Storm DR; McKnight GS; Daw NW
    J Neurosci; 2004 Oct; 24(41):9049-58. PubMed ID: 15483123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically induced, activity-independent LTD elicited by simultaneous activation of PKG and inhibition of PKA.
    Santschi L; Reyes-Harde M; Stanton PK
    J Neurophysiol; 1999 Sep; 82(3):1577-89. PubMed ID: 10482771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and pharmacological demonstration of differential recruitment of cAMP-dependent protein kinases by synaptic activity.
    Woo NH; Duffy SN; Abel T; Nguyen PV
    J Neurophysiol; 2000 Dec; 84(6):2739-45. PubMed ID: 11110804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation selectivity is reduced by monocular deprivation in combination with PKA inhibitors.
    Beaver CJ; Fischer QS; Ji Q; Daw NW
    J Neurophysiol; 2002 Oct; 88(4):1933-40. PubMed ID: 12364519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex.
    Jang HJ; Cho KH; Kim HS; Hahn SJ; Kim MS; Rhie DJ
    J Neurophysiol; 2009 Jan; 101(1):269-75. PubMed ID: 18971296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscarinic acetylcholine receptor knockout mice show distinct synaptic plasticity impairments in the visual cortex.
    Origlia N; Kuczewski N; Aztiria E; Gautam D; Wess J; Domenici L
    J Physiol; 2006 Dec; 577(Pt 3):829-40. PubMed ID: 17023506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of cyclic nucleotide-dependent protein kinases in cyclic AMP-mediated vasorelaxation.
    Eckly-Michel A; Martin V; Lugnier C
    Br J Pharmacol; 1997 Sep; 122(1):158-64. PubMed ID: 9298542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K; Kasamatsu T; Tanaka S
    Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn.
    Yang HW; Hu XD; Zhang HM; Xin WJ; Li MT; Zhang T; Zhou LJ; Liu XG
    J Neurophysiol; 2004 Mar; 91(3):1122-33. PubMed ID: 14586032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Requirement of a critical period of GABAergic receptor blockade for induction of a cAMP-mediated long-term depression at CA3-CA1 synapses.
    Yu TP; Lester HA; Davidson N
    Synapse; 2003 Jul; 49(1):12-9. PubMed ID: 12710011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct synaptic loci of Ca2+/calmodulin-dependent protein kinase II necessary for long-term potentiation and depression.
    Stanton PK; Gage AT
    J Neurophysiol; 1996 Sep; 76(3):2097-101. PubMed ID: 8890320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL
    Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of ocular dominance plasticity mediated by adenosine 3',5'-monophosphate in adult visual cortex.
    Imamura K; Kasamatsu T; Shirokawa T; Ohashi T
    Proc Biol Sci; 1999 Aug; 266(1428):1507-16. PubMed ID: 10467742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of hippocampal synaptic plasticity by cyclic AMP-dependent protein kinases.
    Nguyen PV; Woo NH
    Prog Neurobiol; 2003 Dec; 71(6):401-37. PubMed ID: 15013227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.