These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 12854715)

  • 1. Kinetics and structural constraints of chromate reduction by green rusts.
    Bond DL; Fendorf S
    Environ Sci Technol; 2003 Jun; 37(12):2750-7. PubMed ID: 12854715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: kinetic and mechanistic studies.
    Legrand L; El Figuigui A; Mercier F; Chausse A
    Environ Sci Technol; 2004 Sep; 38(17):4587-95. PubMed ID: 15461167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of Cr(VI) reduction by carbonate green rust.
    Williams AG; Scherer MM
    Environ Sci Technol; 2001 Sep; 35(17):3488-94. PubMed ID: 11563651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic reduction of antimony(V) by green rust (Fe(4)(II)Fe(2)(III)(OH)(12)SO(4).3H(2)O).
    Mitsunobu S; Takahashi Y; Sakai Y
    Chemosphere; 2008 Jan; 70(5):942-7. PubMed ID: 17761212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy.
    Melitas N; Farrell J
    Environ Sci Technol; 2002 Dec; 36(24):5476-82. PubMed ID: 12521178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stabilized green rusts for aqueous Cr(VI) removal: Fast kinetics, high iron utilization rate and anti-acidification.
    Zhao J; Xiong S; Ai J; Wu J; Huang LZ; Yin W
    Chemosphere; 2021 Jan; 262():127853. PubMed ID: 32777616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of chromate in hyperalkaline waste streams by green rusts and zero-valent iron.
    Rogers CM; Burke IT; Ahmed IA; Shaw S
    Environ Technol; 2014; 35(1-4):508-13. PubMed ID: 24600891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new pathway for hexavalent chromium formation in soil: Fire-induced alteration of iron oxides.
    Burton ED; Choppala G; Karimian N; Johnston SG
    Environ Pollut; 2019 Apr; 247():618-625. PubMed ID: 30711817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of metal cation substitution on hexavalent chromium reduction by green rust.
    Thomas AN; Eiche E; Göttlicher J; Steininger R; Benning LG; Freeman HM; Tobler DJ; Mangayayam M; Dideriksen K; Neumann T
    Geochem Trans; 2020 Feb; 21(1):2. PubMed ID: 32060743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green rust and iron oxide formation influences metolachlor dechlorination during zerovalent iron treatment.
    Satapanajaru T; Shea PJ; Comfort SD; Roh Y
    Environ Sci Technol; 2003 Nov; 37(22):5219-27. PubMed ID: 14655711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron promoted reduction of chromate by dissimilatory iron-reducing bacteria.
    Wielinga B; Mizuba MM; Hansel CM; Fendorf S
    Environ Sci Technol; 2001 Feb; 35(3):522-7. PubMed ID: 11351723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudo-first-order reaction of chemically and biologically formed green rusts with HgII and C₁₅H₁₅N₃O₂: effects of pH and stabilizing agents (phosphate, silicate, polyacrylic acid, and bacterial cells).
    Remy PP; Etique M; Hazotte AA; Sergent AS; Estrade N; Cloquet C; Hanna K; Jorand FP
    Water Res; 2015 Mar; 70():266-78. PubMed ID: 25543237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromate reduction and retention processes within arid subsurface environments.
    Ginder-Vogel M; Borch T; Mayes MA; Jardine PM; Fendorf S
    Environ Sci Technol; 2005 Oct; 39(20):7833-9. PubMed ID: 16295844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals.
    Joe-Wong C; Brown GE; Maher K
    Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing chromate reduction by dissimilatory iron reducing bacteria using mathematical modeling.
    Peng L; Liu Y; Gao SH; Dai X; Ni BJ
    Chemosphere; 2015 Nov; 139():334-9. PubMed ID: 26171818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrite reduction by biogenic hydroxycarbonate green rusts: evidence for hydroxy-nitrite green rust formation as an intermediate reaction product.
    Guerbois D; Ona-Nguema G; Morin G; Abdelmoula M; Laverman AM; Mouchel JM; Barthelemy K; Maillot F; Brest J
    Environ Sci Technol; 2014 Apr; 48(8):4505-14. PubMed ID: 24708473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromate removal by an iron sorbent: mechanism and modeling.
    Smith E; Ghiassi K
    Water Environ Res; 2006 Jan; 78(1):84-93. PubMed ID: 16553170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.