These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12854717)

  • 1. Modeling metal binding to soils: the role of natural organic matter.
    Gustafsson JP; Pechová P; Berggren D
    Environ Sci Technol; 2003 Jun; 37(12):2767-74. PubMed ID: 12854717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.
    Weng L; Temminghoff EJ; Lofts S; Tipping E; Van Riemsdijk WH
    Environ Sci Technol; 2002 Nov; 36(22):4804-10. PubMed ID: 12487303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils.
    Impellitteri CA; Lu Y; Saxe JK; Allen HE; Peijnenburg WJ
    Environ Int; 2002 Nov; 28(5):401-10. PubMed ID: 12437290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of metal binding in tropical Fluvisols and Acrisols treated with biosolids and wastewater.
    Khai NM; Oborn I; Hillier S; Gustafsson JP
    Chemosphere; 2008 Feb; 70(8):1338-46. PubMed ID: 17988712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling salt-dependent proton binding by organic soils with the NICA-Donnan and Stockholm humic models.
    Gustafsson JP; Kleja DB
    Environ Sci Technol; 2005 Jul; 39(14):5372-7. PubMed ID: 16082968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of individual sorbents to the control of heavy metal activity in sandy soil.
    Weng L; Temminghoff EJ; Van Riemsdijk WH
    Environ Sci Technol; 2001 Nov; 35(22):4436-43. PubMed ID: 11757598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids.
    Clemente R; Bernal MP
    Chemosphere; 2006 Aug; 64(8):1264-73. PubMed ID: 16481023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaching of heavy metals from contaminated soils: an experimental and modeling study.
    Dijkstra JJ; Meeussen JC; Comans RN
    Environ Sci Technol; 2004 Aug; 38(16):4390-5. PubMed ID: 15382869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.
    Chai Y; Guo J; Chai S; Cai J; Xue L; Zhang Q
    Chemosphere; 2015 Sep; 134():67-75. PubMed ID: 25911049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the potential mobility of Cd, Cu, Ni, Pb and Zn in Mollic Fluvisols.
    Rennert T; Rinklebe J
    Environ Geochem Health; 2017 Dec; 39(6):1291-1304. PubMed ID: 28540510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales.
    Tipping E; Rieuwerts J; Pan G; Ashmore MR; Lofts S; Hill MT; Farago ME; Thornton I
    Environ Pollut; 2003; 125(2):213-25. PubMed ID: 12810315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils.
    de Matos AT; Fontes MP; da Costa LM; Martinez MA
    Environ Pollut; 2001; 111(3):429-35. PubMed ID: 11202747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling of the solid-solution partitioning of heavy metals and arsenic in embanked flood plain soils of the rivers Rhine and Meuse.
    Schröder TJ; Hiemstra T; Vink JP; van der Zee SE
    Environ Sci Technol; 2005 Sep; 39(18):7176-84. PubMed ID: 16201646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil.
    Sauvé S; Manna S; Turmel MC; Roy AG; Courchesne F
    Environ Sci Technol; 2003 Nov; 37(22):5191-6. PubMed ID: 14655707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination.
    Hernandez L; Probst A; Probst JL; Ulrich E
    Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally induced changes in metal solubility of contaminated soils is linked to mineral recrystallization and organic matter transformations.
    Martínez CE; Jacobson A; McBride MB
    Environ Sci Technol; 2001 Mar; 35(5):908-16. PubMed ID: 11351534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding.
    Christl I; Milne CJ; Kinniburgh DG; Kretzschmar R
    Environ Sci Technol; 2001 Jun; 35(12):2512-7. PubMed ID: 11432556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic matter.
    Kalbitz K; Wennrich R
    Sci Total Environ; 1998 Jan; 209(1):27-39. PubMed ID: 9496662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal extraction from an artificially contaminated sandy soil under EDDS deficiency: significance of humic acid and chelant mixture.
    Yip TC; Yan DY; Yui MM; Tsang DC; Lo IM
    Chemosphere; 2010 Jun; 80(4):416-21. PubMed ID: 20427074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.