These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 12854960)

  • 1. A genetic algorithm with conformational memories for structure prediction of polypeptides.
    Garduño-Juárez R; Morales LB
    J Biomol Struct Dyn; 2003 Aug; 21(1):65-87. PubMed ID: 12854960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational search of peptides and proteins: Monte Carlo minimization with an adaptive bias method applied to the heptapeptide deltorphin.
    Ozkan SB; Meirovitch H
    J Comput Chem; 2004 Mar; 25(4):565-72. PubMed ID: 14735574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo sampling algorithm for searching a scale-transformed energy space of polypeptides.
    Nakamura H
    J Comput Chem; 2002 Mar; 23(4):511-6. PubMed ID: 11908088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of simulated annealing to the multiple-minima problem in small peptides.
    Morales LB; Garduño-Juárez R; Romero D
    J Biomol Struct Dyn; 1991 Feb; 8(4):721-35. PubMed ID: 2059338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of conformational equilibrium of polypeptides by internal coordinate stochastic dynamics. Met5-enkephalin.
    Dorofeyev VE; Mazur AK
    J Biomol Struct Dyn; 1993 Aug; 11(1):143-67. PubMed ID: 8216941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins.
    Abagyan R; Totrov M
    J Mol Biol; 1994 Jan; 235(3):983-1002. PubMed ID: 8289329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformational space exploration of Met- and Leu-enkephalin using the MOLS method, molecular dynamics, and Monte Carlo simulation--a comparative study.
    Ramya L; Gautham N
    Biopolymers; 2012 Mar; 97(3):165-76. PubMed ID: 21953081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio protein fold prediction using evolutionary algorithms: influence of design and control parameters on performance.
    Djurdjevic DP; Biggs MJ
    J Comput Chem; 2006 Aug; 27(11):1177-95. PubMed ID: 16752367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational studies on enkephalins using the MOLS technique.
    Vengadesan K; Gautham N
    Biopolymers; 2004 Aug; 74(6):476-94. PubMed ID: 15274091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated folding in polypeptides of diversified molecular tacticity: implications for protein folding and de novo design.
    Ramakrishnan V; Ranbhor R; Durani S
    Biopolymers; 2005 Jun; 78(2):96-105. PubMed ID: 15690413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The probability distribution of side-chain conformations in [Leu] and [Met]enkephalin determines the potency and selectivity to mu and delta opiate receptors.
    Nielsen BG; Jensen MØ; Bohr HG
    Biopolymers; 2003; 71(5):577-92. PubMed ID: 14635098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural characterization of methionine and leucine enkephalins by hydrogen/deuterium exchange and electrospray ionization tandem mass spectrometry.
    Cai X; Dass C
    Rapid Commun Mass Spectrom; 2005; 19(1):1-8. PubMed ID: 15568184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy landscapes and properties of biomolecules.
    Wales DJ
    Phys Biol; 2005 Nov; 2(4):S86-93. PubMed ID: 16280625
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of protein structure by simulating coarse-grained folding pathways: a preliminary report.
    Colubri A
    J Biomol Struct Dyn; 2004 Apr; 21(5):625-38. PubMed ID: 14769055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin.
    Ripoll DR; Scheraga HA
    Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multiple-minima problem in the conformational analysis of polypeptides. III. An electrostatically driven Monte Carlo method: tests on enkephalin.
    Ripoll DR; Scheraga HA
    J Protein Chem; 1989 Apr; 8(2):263-87. PubMed ID: 2736043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining minimum energy conformations of polypeptides by dynamic programming.
    Vajda S; Delisi C
    Biopolymers; 1990 Dec; 29(14):1755-72. PubMed ID: 2207285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space.
    Caflisch A; Niederer P; Anliker M
    Proteins; 1992 Sep; 14(1):102-9. PubMed ID: 1409559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.