BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 12855050)

  • 1. The placenta at high altitude.
    Zamudio S
    High Alt Med Biol; 2003; 4(2):171-91. PubMed ID: 12855050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fetal growth restriction and maternal oxygen transport during high altitude pregnancy.
    Moore LG
    High Alt Med Biol; 2003; 4(2):141-56. PubMed ID: 12855048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of pregnancy at high altitude on placental morphology in non-native women with and without preeclampsia.
    van Patot MC; Valdez M; Becky V; Cindrova-Davies T; Johns J; Zwerdling L; Jauniaux E; Burton GJ
    Placenta; 2009 Jun; 30(6):523-8. PubMed ID: 19439352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Greater vascularity, lowered HIF-1/DNA binding, and elevated GSH as markers of adaptation to in vivo chronic hypoxia.
    Tissot van Patot MC; Bendrick-Peart J; Beckey VE; Serkova N; Zwerdlinger L
    Am J Physiol Lung Cell Mol Physiol; 2004 Sep; 287(3):L525-32. PubMed ID: 15132953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypobaric hypoxia and villous trophoblast: evidence that human pregnancy at high altitude (3600 m) perturbs epithelial turnover and coagulation-fibrinolysis in the intervillous space.
    Mayhew TM; Bowles C; YĆ¼cel F
    Placenta; 2002; 23(2-3):154-62. PubMed ID: 11945081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in fetal capillaries during preplacental hypoxia: growth, shape remodelling and villous capillarization in placentae from high-altitude pregnancies.
    Mayhew TM
    Placenta; 2003; 24(2-3):191-8. PubMed ID: 12566246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of high altitude on human placental amino acid transport.
    Vaughan OR; Thompson F; Lorca RA; Julian CG; Powell TL; Moore LG; Jansson T
    J Appl Physiol (1985); 2020 Jan; 128(1):127-133. PubMed ID: 31804891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Iron, oxygen and placental development in the etiology of preeclampsia. Effects of high altitude in Ecuador].
    Escudero C; Calle A
    Rev Med Chil; 2006 Apr; 134(4):491-8. PubMed ID: 16758087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The human placenta and its pathologies: focus on oxygen].
    Challier JC; Uzan S
    Med Sci (Paris); 2003 Nov; 19(11):1111-20. PubMed ID: 14648482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Severe intrauterine growth restriction pregnancies have increased placental endoglin levels: hypoxic regulation via transforming growth factor-beta 3.
    Yinon Y; Nevo O; Xu J; Many A; Rolfo A; Todros T; Post M; Caniggia I
    Am J Pathol; 2008 Jan; 172(1):77-85. PubMed ID: 18156205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters.
    Zamudio S; Baumann MU; Illsley NP
    Placenta; 2006 Jan; 27(1):49-55. PubMed ID: 16310037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Morphofunctional adaptation of the placenta under conditions of natural high-altitude hypoxia].
    Milovanov AP; Reshetnikova OS; Borzykh AN
    Arkh Patol; 1988; 50(9):11-7. PubMed ID: 3060048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uteroplacental hemostasis in intrauterine fetal growth retardation.
    Sheppard BL; Bonnar J
    Semin Thromb Hemost; 1999; 25(5):443-6. PubMed ID: 10625199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-altitude hypoxia and preeclampsia.
    Zamudio S
    Front Biosci; 2007 May; 12():2967-77. PubMed ID: 17485273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of hypobaric hypoxia on the fetoplacental unit: the morphometric diffusing capacity of the villous membrane at high altitude.
    Reshetnikova OS; Burton GJ; Milovanov AP
    Am J Obstet Gynecol; 1994 Dec; 171(6):1560-5. PubMed ID: 7802068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: molecular evidence for "placental hyperoxia" in intrauterine growth restriction.
    Khaliq A; Dunk C; Jiang J; Shams M; Li XF; Acevedo C; Weich H; Whittle M; Ahmed A
    Lab Invest; 1999 Feb; 79(2):151-70. PubMed ID: 10068204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased apoptosis, altered oxygen signaling, and antioxidant defenses in first-trimester pregnancies with high-resistance uterine artery blood flow.
    Leslie K; Whitley GS; Herse F; Dechend R; Ashton SV; Laing K; Thilaganathan B; Cartwright JE
    Am J Pathol; 2015 Oct; 185(10):2731-41. PubMed ID: 26362067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodelling of uteroplacental arteries is decreased in high altitude placentae.
    Tissot van Patot M; Grilli A; Chapman P; Broad E; Tyson W; Heller DS; Zwerdlinger L; Zamudio S
    Placenta; 2003 Apr; 24(4):326-35. PubMed ID: 12657505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Placental growth, development, and function in relation to maternal nutrition.
    Rosso P
    Fed Proc; 1980 Feb; 39(2):250-4. PubMed ID: 7353682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity of human placental chorionic plate vessels from pregnancies complicated by intrauterine growth restriction (IUGR).
    Wareing M; Greenwood SL; Fyfe GK; Baker PN
    Biol Reprod; 2006 Oct; 75(4):518-23. PubMed ID: 16707770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.