These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 12855300)

  • 1. Multiple-step strategies to recover from stumbling perturbations.
    Forner Cordero A; Koopman HF; van der Helm FC
    Gait Posture; 2003 Aug; 18(1):47-59. PubMed ID: 12855300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy analysis of human stumbling: the limitations of recovery.
    Forner Cordero A; Koopman HJ; van der Helm FC
    Gait Posture; 2005 Apr; 21(3):243-54. PubMed ID: 15760739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical model of the recovery from stumbling.
    Cordero AF; Koopman HJ; van der Helm FC
    Biol Cybern; 2004 Oct; 91(4):212-20. PubMed ID: 15378375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscular responses and movement strategies during stumbling over obstacles.
    Schillings AM; van Wezel BM; Mulder T; Duysens J
    J Neurophysiol; 2000 Apr; 83(4):2093-102. PubMed ID: 10758119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trip recovery strategies following perturbations of variable duration.
    Shirota C; Simon AM; Kuiken TA
    J Biomech; 2014 Aug; 47(11):2679-84. PubMed ID: 24894024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel system for introducing precisely-controlled, unanticipated gait perturbations for the study of stumble recovery.
    King ST; Eveld ME; Martínez A; Zelik KE; Goldfarb M
    J Neuroeng Rehabil; 2019 Jun; 16(1):69. PubMed ID: 31182126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors leading to falls in transfemoral prosthesis users: a case series of prosthesis-side stumble recovery responses.
    King ST; Eveld ME; Zelik KE; Goldfarb M
    J Neuroeng Rehabil; 2024 Jul; 21(1):117. PubMed ID: 39003469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors leading to falls in transfemoral prosthesis users: a case series of sound-side stumble recovery responses.
    Eveld ME; King ST; Zelik KE; Goldfarb M
    J Neuroeng Rehabil; 2022 Sep; 19(1):101. PubMed ID: 36151561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stumbling over obstacles in older adults compared to young adults.
    Schillings AM; Mulder T; Duysens J
    J Neurophysiol; 2005 Aug; 94(2):1158-68. PubMed ID: 15615837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upward perturbations trigger a stumbling effect.
    Cano Porras D; Heimler B; Jacobs JV; Naor SK; Inzelberg R; Zeilig G; Plotnik M
    Hum Mov Sci; 2023 Apr; 88():103069. PubMed ID: 36871477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of perturbation onset timing and length on tripping recovery strategies.
    Shirota C; Simon AM; Rouse EJ; Kuiken TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7833-6. PubMed ID: 22256155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. State-dependent corrective reactions for backward balance losses during human walking.
    Kagawa T; Ohta Y; Uno Y
    Hum Mov Sci; 2011 Dec; 30(6):1210-24. PubMed ID: 21704417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced gait stability in high-functioning poststroke individuals.
    Krasovsky T; Lamontagne A; Feldman AG; Levin MF
    J Neurophysiol; 2013 Jan; 109(1):77-88. PubMed ID: 23054600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery from perturbations during paced walking.
    Oddsson LI; Wall C; McPartland MD; Krebs DE; Tucker CA
    Gait Posture; 2004 Feb; 19(1):24-34. PubMed ID: 14741301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical analysis of the preferred strategy selection in human stumble recovery.
    de Boer T; Wisse M; van der Helm FC
    J Biomech Eng; 2010 Jul; 132(7):071012. PubMed ID: 20590290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of unilateral leg muscle fatigue on balance control in perturbed and unperturbed gait in healthy elderly.
    Toebes MJ; Hoozemans MJ; Dekker J; van Dieën JH
    Gait Posture; 2014; 40(1):215-9. PubMed ID: 24768117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying dynamic and postural balance difficulty during gait perturbations using stabilizing/destabilizing forces.
    Ilmane N; Croteau S; Duclos C
    J Biomech; 2015 Feb; 48(3):441-8. PubMed ID: 25557656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to simulate motor control strategies to recover from perturbations: application to a stumble recovery during gait.
    Forner-Cordero A; Ackermann M; de Lima Freitas M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7829-32. PubMed ID: 22256154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of walking speed on gait stability and interlimb coordination in younger and older adults.
    Krasovsky T; Lamontagne A; Feldman AG; Levin MF
    Gait Posture; 2014; 39(1):378-85. PubMed ID: 24008010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Older adults demonstrate interlimb transfer of reactive gait adaptations to repeated unpredictable gait perturbations.
    McCrum C; Karamanidis K; Grevendonk L; Zijlstra W; Meijer K
    Geroscience; 2020 Feb; 42(1):39-49. PubMed ID: 31776885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.