BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 12855383)

  • 1. Thiol-based redox metabolism of protozoan parasites.
    Müller S; Liebau E; Walter RD; Krauth-Siegel RL
    Trends Parasitol; 2003 Jul; 19(7):320-8. PubMed ID: 12855383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The parasite-specific trypanothione metabolism of trypanosoma and leishmania.
    Krauth-Siegel RL; Meiering SK; Schmidt H
    Biol Chem; 2003 Apr; 384(4):539-49. PubMed ID: 12751784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism.
    Krauth-Siegel RL; Comini MA
    Biochim Biophys Acta; 2008 Nov; 1780(11):1236-48. PubMed ID: 18395526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development.
    Schmidt A; Krauth-Siegel RL
    Curr Top Med Chem; 2002 Nov; 2(11):1239-59. PubMed ID: 12171583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trypanothione system and its implications in the therapy of trypanosomatid diseases.
    Flohé L
    Int J Med Microbiol; 2012 Oct; 302(4-5):216-20. PubMed ID: 22889611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione and trypanothione in parasitic hydroperoxide metabolism.
    Flohé L; Hecht HJ; Steinert P
    Free Radic Biol Med; 1999 Nov; 27(9-10):966-84. PubMed ID: 10569629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids.
    Manta B; Comini M; Medeiros A; Hugo M; Trujillo M; Radi R
    Biochim Biophys Acta; 2013 May; 1830(5):3199-216. PubMed ID: 23396001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymes of parasite thiol metabolism as drug targets.
    Krauth-Siegel RL; Coombs GH
    Parasitol Today; 1999 Oct; 15(10):404-9. PubMed ID: 10481152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entamoeba histolytica lacks trypanothione metabolism.
    Ariyanayagam MR; Fairlamb AH
    Mol Biochem Parasitol; 1999 Sep; 103(1):61-9. PubMed ID: 10514081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tryparedoxin-coupled biosensor reveals a mitochondrial trypanothione metabolism in trypanosomes.
    Ebersoll S; Bogacz M; Günter LM; Dick TP; Krauth-Siegel RL
    Elife; 2020 Jan; 9():. PubMed ID: 32003744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity.
    González-Chávez Z; Vázquez C; Mejia-Tlachi M; Márquez-Dueñas C; Manning-Cela R; Encalada R; Rodríguez-Enríquez S; Michels PAM; Moreno-Sánchez R; Saavedra E
    Redox Biol; 2019 Sep; 26():101231. PubMed ID: 31203195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic analysis of trypanothione synthetase knockdown in the African trypanosome.
    Ariyanayagam MR; Oza SL; Guther ML; Fairlamb AH
    Biochem J; 2005 Oct; 391(Pt 2):425-32. PubMed ID: 16008527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification.
    Irigoín F; Cibils L; Comini MA; Wilkinson SR; Flohé L; Radi R
    Free Radic Biol Med; 2008 Sep; 45(6):733-42. PubMed ID: 18588970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key proteins in the polyamine-trypanothione pathway as drug targets against Trypanosoma cruzi.
    Maya JD; Salas CO; Aguilera-Venegas B; Diaz MV; López-Muñoz R
    Curr Med Chem; 2014; 21(15):1757-71. PubMed ID: 24251576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naegleria fowleri: a free-living highly pathogenic amoeba contains trypanothione/trypanothione reductase and glutathione/glutathione reductase systems.
    Ondarza RN; Hurtado G; Tamayo E; Iturbe A; Hernández E
    Exp Parasitol; 2006 Nov; 114(3):141-6. PubMed ID: 16620809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamine-trypanothione pathway: an update.
    Ilari A; Fiorillo A; Genovese I; Colotti G
    Future Med Chem; 2017 Jan; 9(1):61-77. PubMed ID: 27957878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol redox biology of trypanosomatids and potential targets for chemotherapy.
    Leroux AE; Krauth-Siegel RL
    Mol Biochem Parasitol; 2016; 206(1-2):67-74. PubMed ID: 26592324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Trypanothione Metabolism in Trypanosomatids.
    González-Montero MC; Andrés-Rodríguez J; García-Fernández N; Pérez-Pertejo Y; Reguera RM; Balaña-Fouce R; García-Estrada C
    Molecules; 2024 May; 29(10):. PubMed ID: 38792079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ovothiol and trypanothione as antioxidants in trypanosomatids.
    Ariyanayagam MR; Fairlamb AH
    Mol Biochem Parasitol; 2001 Jul; 115(2):189-98. PubMed ID: 11420105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors.
    Bond CS; Zhang Y; Berriman M; Cunningham ML; Fairlamb AH; Hunter WN
    Structure; 1999 Jan; 7(1):81-9. PubMed ID: 10368274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.