These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12855707)

  • 1. 1,1'-bis(anilino)-4-,4'-bis(naphtalene)-8,8'-disulfonate acts as an inhibitor of lipoprotein lipase and competes for binding with apolipoprotein CII.
    Lookene A; Zhang L; Tougu V; Olivecrona G
    J Biol Chem; 2003 Sep; 278(39):37183-94. PubMed ID: 12855707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apolipoprotein C-II39-62 activates lipoprotein lipase by direct lipid-independent binding.
    MacPhee CE; Hatters DM; Sawyer WH; Howlett GJ
    Biochemistry; 2000 Mar; 39(12):3433-40. PubMed ID: 10727238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal domain of apolipoprotein CII as both activator and competitive inhibitor of lipoprotein lipase.
    Cheng Q; Blackett P; Jackson KW; McConathy WJ; Wang CS
    Biochem J; 1990 Jul; 269(2):403-7. PubMed ID: 2386483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chymotryptic cleavage of lipoprotein lipase. Identification of cleavage sites and functional studies of the truncated molecule.
    Lookene A; Bengtsson-Olivecrona G
    Eur J Biochem; 1993 Apr; 213(1):185-94. PubMed ID: 8477692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analyses of human apolipoprotein CII by site-directed mutagenesis: identification of residues important for activation of lipoprotein lipase.
    Shen Y; Lookene A; Nilsson S; Olivecrona G
    J Biol Chem; 2002 Feb; 277(6):4334-42. PubMed ID: 11719505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of lipoprotein lipase with heparin fragments and with heparan sulfate: stoichiometry, stabilization, and kinetics.
    Lookene A; Chevreuil O; Ostergaard P; Olivecrona G
    Biochemistry; 1996 Sep; 35(37):12155-63. PubMed ID: 8810923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties.
    Davis RC; Wong H; Nikazy J; Wang K; Han Q; Schotz MC
    J Biol Chem; 1992 Oct; 267(30):21499-504. PubMed ID: 1400461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The comparative kinetics of soluble and heparin-Sepharose-immobilized bovine lipoprotein lipase.
    Posner I; Wang CS; McConathy WJ
    Arch Biochem Biophys; 1983 Oct; 226(1):306-16. PubMed ID: 6639055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat).
    Lookene A; Skottova N; Olivecrona G
    Eur J Biochem; 1994 Jun; 222(2):395-403. PubMed ID: 8020477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of lipoprotein lipase and apolipoprotein C-II with sonicated vesicles of 1,2-ditetradecylphosphatidylcholine: comparison of binding constants.
    McLean LR; Jackson RL
    Biochemistry; 1985 Jul; 24(15):4196-201. PubMed ID: 4052389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subdomain chimeras of hepatic lipase and lipoprotein lipase. Localization of heparin and cofactor binding.
    Hill JS; Yang D; Nikazy J; Curtiss LK; Sparrow JT; Wong H
    J Biol Chem; 1998 Nov; 273(47):30979-84. PubMed ID: 9812994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism.
    Lookene A; Beckstead JA; Nilsson S; Olivecrona G; Ryan RO
    J Biol Chem; 2005 Jul; 280(27):25383-7. PubMed ID: 15878877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of apolipoprotein CII to probe the role of its secondary structure for activation of lipoprotein lipase.
    Shen Y; Lookene A; Zhang L; Olivecrona G
    J Biol Chem; 2010 Mar; 285(10):7484-92. PubMed ID: 20042600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a lipoprotein lipase cofactor-binding site by chemical cross-linking and transfer of apolipoprotein C-II-responsive lipolysis from lipoprotein lipase to hepatic lipase.
    McIlhargey TL; Yang Y; Wong H; Hill JS
    J Biol Chem; 2003 Jun; 278(25):23027-35. PubMed ID: 12682050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apolipoprotein CII from rainbow trout (Oncorhynchus mykiss) is functionally active but structurally very different from mammalian apolipoprotein CII.
    Shen Y; Lindberg A; Olivecrona G
    Gene; 2000 Aug; 254(1-2):189-98. PubMed ID: 10974550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the carboxy-terminal domain of lipoprotein lipase to interaction with heparin and lipoproteins.
    Lookene A; Nielsen MS; Gliemann J; Olivecrona G
    Biochem Biophys Res Commun; 2000 Apr; 271(1):15-21. PubMed ID: 10777674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium triggers folding of lipoprotein lipase into active dimers.
    Zhang L; Lookene A; Wu G; Olivecrona G
    J Biol Chem; 2005 Dec; 280(52):42580-91. PubMed ID: 16179346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction and functional characterization of recombinant fusion proteins of human lipoprotein lipase and apolipoprotein CII.
    Hoffmann MM; Stoffel W
    Eur J Biochem; 1996 May; 237(3):545-52. PubMed ID: 8647097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipoprotein lipase from rainbow trout differs in several respects from the enzyme in mammals.
    Lindberg A; Olivecrona G
    Gene; 2002 Jun; 292(1-2):213-23. PubMed ID: 12119116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of bis(1-anilino-8-naphthalenesulfonate) with yeast hexokinase: a steady-state fluorescence study.
    Maity H; Kasturi SR
    J Photochem Photobiol B; 1998 Dec; 47(2-3):190-6. PubMed ID: 10093918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.