BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 12855735)

  • 21. Regulation of expression of mas and fadD28, two genes involved in production of dimycocerosyl phthiocerol, a virulence factor of Mycobacterium tuberculosis.
    Sirakova TD; Fitzmaurice AM; Kolattukudy P
    J Bacteriol; 2002 Dec; 184(24):6796-802. PubMed ID: 12446629
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Disruption of msl3 abolishes the synthesis of mycolipanoic and mycolipenic acids required for polyacyltrehalose synthesis in Mycobacterium tuberculosis H37Rv and causes cell aggregation.
    Dubey VS; Sirakova TD; Kolattukudy PE
    Mol Microbiol; 2002 Sep; 45(5):1451-9. PubMed ID: 12207710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeted replacement of the mycocerosic acid synthase gene in Mycobacterium bovis BCG produces a mutant that lacks mycosides.
    Azad AK; Sirakova TD; Rogers LM; Kolattukudy PE
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4787-92. PubMed ID: 8643481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Down-regulation of PE11, a cell wall associated esterase, enhances the biofilm growth of Mycobacterium tuberculosis and reduces cell wall virulence lipid levels.
    Rastogi S; Singh AK; Pant G; Mitra K; Sashidhara KV; Krishnan MY
    Microbiology (Reading); 2017 Jan; 163(1):52-61. PubMed ID: 28198348
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis.
    Sirakova TD; Dubey VS; Kim HJ; Cynamon MH; Kolattukudy PE
    Infect Immun; 2003 Jul; 71(7):3794-801. PubMed ID: 12819062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous phthiocerol dimycocerosate-deficient variants of Mycobacterium tuberculosis are susceptible to gamma interferon-mediated immunity.
    Kirksey MA; Tischler AD; Siméone R; Hisert KB; Uplekar S; Guilhot C; McKinney JD
    Infect Immun; 2011 Jul; 79(7):2829-38. PubMed ID: 21576344
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.
    Velmurugan K; Chen B; Miller JL; Azogue S; Gurses S; Hsu T; Glickman M; Jacobs WR; Porcelli SA; Briken V
    PLoS Pathog; 2007 Jul; 3(7):e110. PubMed ID: 17658950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis.
    Raynaud C; Guilhot C; Rauzier J; Bordat Y; Pelicic V; Manganelli R; Smith I; Gicquel B; Jackson M
    Mol Microbiol; 2002 Jul; 45(1):203-17. PubMed ID: 12100560
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling.
    Jain M; Petzold CJ; Schelle MW; Leavell MD; Mougous JD; Bertozzi CR; Leary JA; Cox JS
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):5133-8. PubMed ID: 17360366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The methyl-branched fortifications of Mycobacterium tuberculosis.
    Minnikin DE; Kremer L; Dover LG; Besra GS
    Chem Biol; 2002 May; 9(5):545-53. PubMed ID: 12031661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. cDNA-RNA subtractive hybridization reveals increased expression of mycocerosic acid synthase in intracellular Mycobacterium bovis BCG.
    Li MS; Monahan IM; Waddell SJ; Mangan JA; Martin SL; Everett MJ; Butcher PD
    Microbiology (Reading); 2001 Aug; 147(Pt 8):2293-2305. PubMed ID: 11496006
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mutation in mce operons attenuates Mycobacterium tuberculosis virulence.
    Gioffré A; Infante E; Aguilar D; Santangelo MP; Klepp L; Amadio A; Meikle V; Etchechoury I; Romano MI; Cataldi A; Hernández RP; Bigi F
    Microbes Infect; 2005 Mar; 7(3):325-34. PubMed ID: 15804490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide.
    Darwin KH; Ehrt S; Gutierrez-Ramos JC; Weich N; Nathan CF
    Science; 2003 Dec; 302(5652):1963-6. PubMed ID: 14671303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence.
    Parish T; Smith DA; Roberts G; Betts J; Stoker NG
    Microbiology (Reading); 2003 Jun; 149(Pt 6):1423-1435. PubMed ID: 12777483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Nonribosomal Peptide Synthase Gene Driving Virulence in Mycobacterium tuberculosis.
    Bhatt K; Machado H; Osório NS; Sousa J; Cardoso F; Magalhães C; Chen B; Chen M; Kim J; Singh A; Ferreira CM; Castro AG; Torrado E; Jacobs WR; Bhatt A; Saraiva M
    mSphere; 2018 Oct; 3(5):. PubMed ID: 30381350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Requirement of gene fadD33 for the growth of Mycobacterium tuberculosis in a hepatocyte cell line.
    Rindi L; Bonanni D; Lari N; Garzelli C
    New Microbiol; 2004 Apr; 27(2):125-31. PubMed ID: 15164622
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The knockout of the lprG-Rv1410 operon produces strong attenuation of Mycobacterium tuberculosis.
    Bigi F; Gioffré A; Klepp L; Santangelo MP; Alito A; Caimi K; Meikle V; Zumárraga M; Taboga O; Romano MI; Cataldi A
    Microbes Infect; 2004 Feb; 6(2):182-7. PubMed ID: 14998516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice.
    Cox JS; Chen B; McNeil M; Jacobs WR
    Nature; 1999 Nov; 402(6757):79-83. PubMed ID: 10573420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis.
    Gonzalo Asensio J; Maia C; Ferrer NL; Barilone N; Laval F; Soto CY; Winter N; Daffé M; Gicquel B; Martín C; Jackson M
    J Biol Chem; 2006 Jan; 281(3):1313-6. PubMed ID: 16326699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attenuation of Mycobacterium tuberculosis functionally disrupted in a fatty acyl-coenzyme A synthetase gene fadD5.
    Dunphy KY; Senaratne RH; Masuzawa M; Kendall LV; Riley LW
    J Infect Dis; 2010 Apr; 201(8):1232-9. PubMed ID: 20214478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.