These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1285644)

  • 1. Evaluation of two unstructured mathematical models for the penicillin G fed-batch fermentation.
    Nicolaï BM; Van Impe JF; Vanrolleghem PA; Vandewalle J
    Antonie Van Leeuwenhoek; 1992 Nov; 62(4):273-83. PubMed ID: 1285644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical modelling of industrial pilot-plant penicillin-G fed-batch fermentations.
    Menezes JC; Alves SS; Lemos JM; de Azevedo SF
    J Chem Technol Biotechnol; 1994 Oct; 61(2):123-38. PubMed ID: 7765415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segregated mathematical model for the fed-batch cultivation of a high-producing strain of Penicillium chrysogenum.
    Tiller V; Meyerhoff J; Sziele D; Schügerl K; Bellgardt KH
    J Biotechnol; 1994 May; 34(2):119-31. PubMed ID: 7764846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced penicillin production by oligosaccharides from batch cultures of Penicillium chrysogenum in stirred-tank reactors.
    Ariyo B; Tamerler C; Bucke C; Keshavarz T
    FEMS Microbiol Lett; 1998 Sep; 166(1):165-70. PubMed ID: 9776634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cybernetic modeling based on pathway analysis for Penicillium chrysogenum fed-batch fermentation.
    Geng J; Yuan J
    Bioprocess Biosyst Eng; 2010 Aug; 33(6):665-74. PubMed ID: 19543751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formate as an auxiliary substrate for glucose-limited cultivation of Penicillium chrysogenum: impact on penicillin G production and biomass yield.
    Harris DM; van der Krogt ZA; van Gulik WM; van Dijken JP; Pronk JT
    Appl Environ Microbiol; 2007 Aug; 73(15):5020-5. PubMed ID: 17545326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G.
    van Gulik WM; de Laat WT; Vinke JL; Heijnen JJ
    Biotechnol Bioeng; 2000 Jun; 68(6):602-18. PubMed ID: 10799985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of feeding strategy on Zymomonas mobilis CP4 fed-batch fermentations and mathematical modeling of the system.
    Bravo S; Mahn A; Shene C
    Appl Microbiol Biotechnol; 2000 Oct; 54(4):487-93. PubMed ID: 11092622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Penicillium chrysogenum Fermentation and Analysis of Benzylpenicillin by Bioassay and HPLC.
    Kosalková K; Sánchez-Orejas IC; Cueto L; García-Estrada C
    Methods Mol Biol; 2021; 2296():195-207. PubMed ID: 33977449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dynamic model-based preparation of uniformly-
    Wang G; Chu J; Zhuang Y; van Gulik W; Noorman H
    J Biotechnol; 2019 Jun; 299():21-31. PubMed ID: 31047964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations.
    Cao YX; Qiao B; Lu H; Chen Y; Yuan YJ
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1193-202. PubMed ID: 20941491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Penicillin G production by immobilized whole cells of Penicillium chrysogenum.
    Morikawa Y; Karube I; Suzuki S
    Biotechnol Bioeng; 1979 Feb; 21(2):261-70. PubMed ID: 106905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penicillin production by glucose-derepressed mutants of Penicillium chrysogenum.
    Chang LT; McGrory EL; Elander RP
    J Ind Microbiol; 1990 Nov; 6(3):165-9. PubMed ID: 1367481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flux response of glycolysis and storage metabolism during rapid feast/famine conditions in Penicillium chrysogenum using dynamic (13)C labeling.
    de Jonge L; Buijs NA; Heijnen JJ; van Gulik WM; Abate A; Wahl SA
    Biotechnol J; 2014 Mar; 9(3):372-85. PubMed ID: 24376125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum.
    Douma RD; Deshmukh AT; de Jonge LP; de Jong BW; Seifar RM; Heijnen JJ; van Gulik WM
    Biotechnol Prog; 2012; 28(2):337-48. PubMed ID: 22223600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical conversion yields for penicillin synthesis.
    Cooney CL; Acevedo F
    Biotechnol Bioeng; 1977 Oct; 19(10):1449-62. PubMed ID: 409442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive Profiling of Proteome Changes Provide Insights of Industrial Penicillium chrysogenum During Pilot and Industrial Penicillin G Fermentation.
    Cheng JS; Zhao Y; Qiao B; Lu H; Chen Y; Yuan YJ
    Appl Biochem Biotechnol; 2016 Jul; 179(5):788-804. PubMed ID: 26961188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Penicillin G Produced by
    Horii S; Ando M; Samuel AZ; Take A; Nakashima T; Matsumoto A; Takahashi YK; Takeyama H
    J Nat Prod; 2020 Nov; 83(11):3223-3229. PubMed ID: 33074672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The development of an industrial-scale fed-batch fermentation simulation.
    Goldrick S; Ştefan A; Lovett D; Montague G; Lennox B
    J Biotechnol; 2015 Jan; 193():70-82. PubMed ID: 25449107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Penicillin fermentation: mechanisms and models for industrial-scale bioreactors.
    Patnaik PR
    Crit Rev Microbiol; 2001; 27(1):25-39. PubMed ID: 11305366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.