These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12857027)

  • 1. Inheritance patterns of phenolics in F1, F2, and back-cross hybrids of willows: implications for herbivore responses to hybrid plants.
    Hallgren P; Ikonen A; Hjältén J; Roininen H
    J Chem Ecol; 2003 May; 29(5):1143-58. PubMed ID: 12857027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of willow hybridisation and simulated browsing on the development and survival of the leaf beetle Phratora vitellinae.
    Hallgren P
    BMC Ecol; 2003 Jun; 3():5. PubMed ID: 12823861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of an herbivorous leaf beetle (Phratora vulgatissima) on Salix F2 hybrids: the importance of phenolics.
    Torp M; Lehrman A; Stenberg JA; Julkunen-Tiitto R; Björkman C
    J Chem Ecol; 2013 Apr; 39(4):516-24. PubMed ID: 23456345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenolic glycosides and condensed tannins in Salix sericea, S. eriocephala and their F1 hybrids: not all hybrids are created equal.
    Orians CM; Griffiths ME; Roche1b BM; Fritz RS
    Biochem Syst Ecol; 2000 Aug; 28(7):619-632. PubMed ID: 10854738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental test of hybrid resistance to insects and pathogens using Salix caprea, S. repens and their F1 hybrids.
    Hjältén J
    Oecologia; 1998 Nov; 117(1-2):127-132. PubMed ID: 28308478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic architecture of susceptibility to herbivores in hybrid willows.
    Fritz RS; Hochwender CG; Brunsfeld SJ; Roche BM
    J Evol Biol; 2003 Nov; 16(6):1115-26. PubMed ID: 14640403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. To each its own: differential response of specialist and generalist herbivores to plant defence in willows.
    Volf M; Hrcek J; Julkunen-Tiitto R; Novotny V
    J Anim Ecol; 2015 Jul; 84(4):1123-32. PubMed ID: 25649252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary chemistry of hybrid and parental willows: Phenolic glycosides and condensed tannins inSalix sericea, S. eriocephala, and their hybrids.
    Orians CM; Fritz RS
    J Chem Ecol; 1995 Sep; 21(9):1245-53. PubMed ID: 24234624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How slug herbivory of juvenile hybrid willows alters chemistry, growth and subsequent susceptibility to diverse plant enemies.
    Orians CM; Fritz RS; Hochwender CG; Albrectsen BR; Czesak ME
    Ann Bot; 2013 Aug; 112(4):757-65. PubMed ID: 23475954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the flavan-3-ol patterns in willow species during one growing-season.
    Wiesneth S; Aas G; Heilmann J; Jürgenliemk G
    Phytochemistry; 2018 Jan; 145():26-39. PubMed ID: 29059537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in an Eucalyptus species.
    O'Reilly-Wapstra JM; Potts BM; McArthur C; Davies NW; Tilyard P
    J Chem Ecol; 2005 Feb; 31(2):357-75. PubMed ID: 15856789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability in the composition of phenolic compounds in winter-dormant Salix pyrolifolia in relation to plant part and age.
    Lavola A; Maukonen M; Julkunen-Tiitto R
    Phytochemistry; 2018 Sep; 153():102-110. PubMed ID: 29906656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Willow hybrids and herbivory: a test of hypotheses of phytophage response to hybrid plants using the generalist leaf-feeder Lochmaea caprea (Chrysomelidae).
    Hjältén J
    Oecologia; 1997 Feb; 109(4):571-574. PubMed ID: 28307341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant genetic differences influence herbivore community structure: evidence from a hybrid willow system.
    Hochwender CG; Fritz RS
    Oecologia; 2004 Mar; 138(4):547-57. PubMed ID: 14727172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between willows and insect herbivores under enhanced ultraviolet-B radiation.
    Veteli TO; Tegelberg R; Pusenius J; Sipura M; Julkunen-Tiitto R; Aphalo PJ; Tahvanainen J
    Oecologia; 2003 Oct; 137(2):312-20. PubMed ID: 12908105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance.
    Fritz RS; Hochwender CG; Lewkiewicz DA; Bothwell S; Orians CM
    Oecologia; 2001 Sep; 129(1):87-97. PubMed ID: 28547071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and chemical defense in willow seedlings: trade-offs are transient.
    Orians CM; Hochwender CG; Fritz RS; Snäll T
    Oecologia; 2010 Jun; 163(2):283-90. PubMed ID: 20012101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RAD-seq reveals genetic structure of the F
    Gramlich S; Wagner ND; Hörandl E
    BMC Plant Biol; 2018 Dec; 18(1):317. PubMed ID: 30509159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inheritance of resistance to mammalian herbivores and of plant defensive chemistry in a Eucalyptus species.
    O'Reilly-Wapstra JM; Potts BM; McArthur C; Davies NW; Tilyard P
    J Chem Ecol; 2005 Mar; 31(3):519-37. PubMed ID: 15898499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrient and plant secondary compound composition and iron-binding capacity in leaves and green stems of commonly used plant browse (Carolina willow; Salix caroliniana) fed to zoo-managed browsing herbivores.
    Lavin SR; Sullivan KE; Wooley SC; Robinson R; Singh S; Stone K; Russell S; Valdes EV
    Zoo Biol; 2015 Nov; 34(6):565-75. PubMed ID: 26335927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.