These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 12857142)

  • 1. Brillouin study of the quantization of acoustic modes in nanospheres.
    Kuok MH; Lim HS; Ng SC; Liu NN; Wang ZK
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):255502. PubMed ID: 12857142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-brillouin study of the eigenvibrations of single isolated polymer nanospheres.
    Li Y; Lim HS; Wang ZK; Ng SC; Kuok MH
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5869-72. PubMed ID: 19198319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low frequency Raman scattering from acoustic phonons confined in ZnO nanoparticles.
    Yadav HK; Gupta V; Sreenivas K; Singh SP; Sundarakannan B; Katiyar RS
    Phys Rev Lett; 2006 Aug; 97(8):085502. PubMed ID: 17026314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman and Brillouin scattering studies of bulk 2H-WSe2.
    Akintola K; Andrews GT; Curnoe SH; Koehler MR; Keppens V
    J Phys Condens Matter; 2015 Oct; 27(39):395401. PubMed ID: 26381161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers.
    Yoo S; Codemard CA; Jeong Y; Sahu JK; Nilsson J
    Appl Opt; 2010 Mar; 49(8):1388-99. PubMed ID: 20220896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypersonic vibrations of Ag@SiO2 (cubic core)-shell nanospheres.
    Sun JY; Wang ZK; Lim HS; Ng SC; Kuok MH; Tran TT; Lu X
    ACS Nano; 2010 Dec; 4(12):7692-8. PubMed ID: 21087022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber.
    Xu Y; Ren M; Lu Y; Lu P; Lu P; Bao X; Wang L; Messaddeq Y; LaRochelle S
    Opt Lett; 2016 Mar; 41(6):1138-41. PubMed ID: 26977653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refractive index sensitivity of Brillouin acoustic modes in single-mode subwavelength-diameter fibers.
    Zhang Y; Lu H; Deng S; Wen X; Li M
    Appl Opt; 2022 Jun; 61(17):5055-5061. PubMed ID: 36256183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface scattering contribution to the plasmon width in embedded Ag nanospheres.
    Monreal RC; Apell SP; Antosiewicz TJ
    Opt Express; 2014 Oct; 22(21):24994-5004. PubMed ID: 25401533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber.
    Afshar S; Kalosha VP; Bao X; Chen L
    Opt Lett; 2005 Oct; 30(20):2685-7. PubMed ID: 16252741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brillouin scattering investigation of solvation dynamics in succinonitrile-lithium salt plastic crystalline electrolytes.
    Das S; Bhadram VS; Narayana C; Bhattacharyya AJ
    J Phys Chem B; 2011 Nov; 115(43):12356-61. PubMed ID: 21939272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of induced longitudinal and shear acoustic phonons by Brillouin scattering.
    Yoshida T; Matsukawa M; Yanagitani T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jun; 58(6):1255-60. PubMed ID: 21693407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition across a sharp interface: Data from Raman and Brillouin imaging spectroscopy.
    Caponi S; Fioretto D; Mattarelli M
    Data Brief; 2020 Dec; 33():106368. PubMed ID: 33088877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guided acoustic-wave Brillouin scattering characteristics of few-mode fiber.
    Matsui T; Nakajima K; Yamamoto F
    Appl Opt; 2015 Jul; 54(19):6093-7. PubMed ID: 26193157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex modes and effective refractive index in 3D periodic arrays of plasmonic nanospheres.
    Campione S; Steshenko S; Albani M; Capolino F
    Opt Express; 2011 Dec; 19(27):26027-43. PubMed ID: 22274192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres.
    Ma R; Schliesser A; Del'haye P; Dabirian A; Anetsberger G; Kippenberg TJ
    Opt Lett; 2007 Aug; 32(15):2200-2. PubMed ID: 17671583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air.
    Ma Y; Li H; Gu Z; Ubachs W; Yu Y; Huang J; Zhou B; Wang Y; Liang K
    Opt Express; 2014 Jan; 22(2):2092-104. PubMed ID: 24515218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 18 W single-stage single-frequency acoustically tailored Raman fiber amplifier.
    Vergien C; Dajani I; Robin C
    Opt Lett; 2012 May; 37(10):1766-8. PubMed ID: 22627564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers.
    Park K; Jeong Y
    Opt Express; 2014 Apr; 22(7):7932-46. PubMed ID: 24718169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing confined phonon modes in individual CdSe nanoplatelets using surface-enhanced Raman scattering.
    Sigle DO; Hugall JT; Ithurria S; Dubertret B; Baumberg JJ
    Phys Rev Lett; 2014 Aug; 113(8):087402. PubMed ID: 25192125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.