These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 12857161)

  • 1. Magnetism of transition-metal/carbon-nanotube hybrid structures.
    Yang CK; Zhao J; Lu JP
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):257203. PubMed ID: 12857161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin transport properties of 3d transition metal(II) phthalocyanines in contact with single-walled carbon nanotube electrodes.
    Shen X; Sun L; Yi Z; Benassi E; Zhang R; Shen Z; Sanvito S; Hou S
    Phys Chem Chem Phys; 2010 Sep; 12(36):10805-11. PubMed ID: 20657905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties.
    Narayanan TN; Suchand Sandeep CS; Shaijumon MM; Ajayan PM; Philip R; Anantharaman MR
    Nanotechnology; 2009 Jul; 20(28):285702. PubMed ID: 19550014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin transport properties of single metallocene molecules attached to single-walled carbon nanotubes via nickel adatoms.
    Wei P; Sun L; Benassi E; Shen Z; Sanvito S; Hou S
    J Chem Phys; 2011 Jun; 134(24):244704. PubMed ID: 21721654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetism in transition-metal-doped silicon nanotubes.
    Singh AK; Briere TM; Kumar V; Kawazoe Y
    Phys Rev Lett; 2003 Oct; 91(14):146802. PubMed ID: 14611544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning electronic transport in cobalt-filled carbon nanotubes using magnetic fields.
    Rossella F; Soldano C; Onorato P; Bellani V
    Nanoscale; 2014 Jan; 6(2):788-94. PubMed ID: 24257837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the covalent linker groups on the spin transport properties of single nickelocene molecules attached to single-walled carbon nanotubes.
    Wei P; Sun L; Benassi E; Shen Z; Sanvito S; Hou S
    J Chem Phys; 2012 May; 136(19):194707. PubMed ID: 22612109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure tailoring and selective adsorption mechanism of metal-coated nanotubes.
    Cho Y; Kim C; Moon H; Choi Y; Park S; Lee CK; Han S
    Nano Lett; 2008 Jan; 8(1):81-6. PubMed ID: 18085808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Titanium monomers and wires adsorbed on carbon nanotubes: a first principles study.
    Fagan SB; Fazzio A; Mota R
    Nanotechnology; 2006 Feb; 17(4):1154-9. PubMed ID: 21727397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between metals and carbon nanotubes: at the interface between old and new materials.
    Banhart F
    Nanoscale; 2009 Nov; 1(2):201-13. PubMed ID: 20644839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of spin information into large electrical signals using carbon nanotubes.
    Hueso LE; Pruneda JM; Ferrari V; Burnell G; Valdés-Herrera JP; Simons BD; Littlewood PB; Artacho E; Fert A; Mathur ND
    Nature; 2007 Jan; 445(7126):410-3. PubMed ID: 17251975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Itinerant flat-band magnetism in hydrogenated carbon nanotubes.
    Yang X; Wu G
    ACS Nano; 2009 Jul; 3(7):1646-50. PubMed ID: 19548640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolayer MXenes: promising half-metals and spin gapless semiconductors.
    Gao G; Ding G; Li J; Yao K; Wu M; Qian M
    Nanoscale; 2016 Apr; 8(16):8986-94. PubMed ID: 27074402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulated inorganic nanostructures: a route to sizable modulated, noncovalent, on-tube potentials in carbon nanotubes.
    Ilie A; Bendall JS; Nagaoka K; Egger S; Nakayama T; Crampin S
    ACS Nano; 2011 Apr; 5(4):2559-69. PubMed ID: 21370812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures.
    Du A; Chen Y; Zhu Z; Amal R; Lu GQ; Smith SC
    J Am Chem Soc; 2009 Dec; 131(47):17354-9. PubMed ID: 19929022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magneto-mechanical coupling behavior of defective single-walled carbon nanotubes.
    Zheng GP; Zhuang HL
    Nanotechnology; 2008 Aug; 19(32):325701. PubMed ID: 21828823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.
    Šipr O; Ebert H; Minár J
    J Phys Condens Matter; 2015 Feb; 27(5):056004. PubMed ID: 25604525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing conductivity of metallic carbon nanotube networks by transition metal adsorption.
    Ketolainen T; Havu V; Puska MJ
    J Chem Phys; 2015 Feb; 142(5):054705. PubMed ID: 25662658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bipolar magnetic semiconductors: a new class of spintronics materials.
    Li X; Wu X; Li Z; Yang J; Hou JG
    Nanoscale; 2012 Sep; 4(18):5680-5. PubMed ID: 22874973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.