These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 12857176)

  • 1. High-power 140-GHz quasioptical gyrotron traveling-wave amplifier.
    Sirigiri JR; Shapiro MA; Temkin RJ
    Phys Rev Lett; 2003 Jun; 90(25 Pt 1):258302. PubMed ID: 12857176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier.
    Joye CD; Shapiro MA; Sirigiri JR; Temkin RJ
    IEEE Trans Electron Devices; 2009 May; 56(5):818-827. PubMed ID: 20054451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Measurement of a Novel Overmoded TE
    Lu C; Jiang W; Wu Z; Liu G; Wang J; Pu Y; Luo Y
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide.
    Soane AV; Shapiro MA; Jawla S; Temkin RJ
    IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc; 2017 Oct; 45(10):2835-2840. PubMed ID: 29033474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube.
    Kim HJ; Nanni EA; Shapiro MA; Sirigiri JR; Woskov PP; Temkin RJ
    Phys Rev Lett; 2010 Sep; 105(13):135101. PubMed ID: 21230783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonic-band-gap traveling-wave gyrotron amplifier.
    Nanni EA; Lewis SM; Shapiro MA; Griffin RG; Temkin RJ
    Phys Rev Lett; 2013 Dec; 111(23):235101. PubMed ID: 24476286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Absolute instabilities in a high-order-mode gyrotron traveling-wave amplifier.
    Tsai WC; Chang TH; Chen NC; Chu KR; Song HH; Luhmann NC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056402. PubMed ID: 15600760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic-band-gap resonator gyrotron.
    Sirigiri JR; Kreischer KE; Machuzak J; Mastovsky I; Shapiro MA; Temkin RJ
    Phys Rev Lett; 2001 Jun; 86(24):5628-31. PubMed ID: 11415318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-gain wide-band gyrotron traveling wave amplifier with a helically corrugated waveguide.
    Bratman VL; Cross AW; Denisov GG; He W; Phelps AD; Ronald K; Samsonov SV; Whyte CG; Young AR
    Phys Rev Lett; 2000 Mar; 84(12):2746-9. PubMed ID: 11017315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband Amplification of Low-Terahertz Signals Using Axis-Encircling Electrons in a Helically Corrugated Interaction Region.
    He W; Donaldson CR; Zhang L; Ronald K; Phelps ADR; Cross AW
    Phys Rev Lett; 2017 Nov; 119(18):184801. PubMed ID: 29219603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and verification of a backward wave oscillation suppression circuit for the Ka-band gyrotron travelling-wave tube.
    Ma Y; Liu G; Lei C; Cao Y; Wang W; Wang Y; Yao Y; Jiang W; Wang J; Luo Y
    Rev Sci Instrum; 2023 Oct; 94(10):. PubMed ID: 37823769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic-band-gap gyrotron amplifier with picosecond pulses.
    Nanni EA; Jawla S; Lewis SM; Shapiro MA; Temkin RJ
    Appl Phys Lett; 2017 Dec; 111(23):233504. PubMed ID: 29249833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High efficiency and wideband gyro-traveling-wave-tube amplifier.
    Yang Y; Ding W
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4450-3. PubMed ID: 11088244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A G-Band Broadband Continuous Wave Traveling Wave Tube for Wireless Communications.
    Feng Y; Bian X; Song B; Li Y; Pan P; Feng J
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Demonstration of a 263-GHz Traveling Wave Tube for Electron Paramagnetic Resonance Spectroscopy.
    Pan P; Zheng Y; Li Y; Song X; Feng Z; Feng J; Britt RD; Luhmann NC
    IEEE Trans Electron Devices; 2023 Nov; 70(11):5897-5902. PubMed ID: 39130611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficiency coupling of radio frequency beams from the dual frequency gyrotron with a corrugated waveguide transmission system.
    Oda Y; Kajiwara K; Takahashi K; Mitsunaka Y; Sakamoto K
    Rev Sci Instrum; 2013 Jan; 84(1):013501. PubMed ID: 23387644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Symmetrical Quasi-Synchronous Step-Transition Folded Waveguide Slow Wave Structure for 650 GHz Traveling Wave Tubes.
    Xu D; He T; Zheng Y; Lu Z; Gong H; Wang Z; Duan Z; Wang S
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrugated Waveguide and Directional Coupler for CW 250-GHz Gyrotron DNP Experiments.
    Woskov PP; Bajaj VS; Hornstein MK; Temkin RJ; Griffin RG
    IEEE Trans Microw Theory Tech; 2005 Jun; 53(6 I):1863-1869. PubMed ID: 17901907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Measurements of a 140-GHz Confocal Gyro-Amplifier.
    Rosenzweig G; Jawla SK; Picard JF; Shapiro MA; Temkin RJ
    J Infrared Millim Terahertz Waves; 2021 Jan; 42(1):29-39. PubMed ID: 33574964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Staggered Double-Segmented Grating Slow-Wave Structure for 340 GHz Traveling-Wave Tube.
    Wang Z; Zhu J; Lu Z; Duan J; Chen H; Wang S; Wang Z; Gong H; Gong Y
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.