These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12857226)

  • 21. Magneto-conductance characteristics of trapped triplet-polaron and triplet-trapped polaron interactions in anthracene-based organic light emitting diodes.
    Jia W; Chen Q; Chen Y; Chen L; Xiong Z
    Phys Chem Chem Phys; 2016 Nov; 18(44):30733-30739. PubMed ID: 27792226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes.
    Zhang Y; Forrest SR
    Phys Rev Lett; 2012 Jun; 108(26):267404. PubMed ID: 23005014
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of organic/organic interfaces in organic light-emitting devices due to polaron-exciton interactions.
    Wang Q; Aziz H
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8733-9. PubMed ID: 23937296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slow hopping and spin dephasing of Coulombically bound polaron pairs in an organic semiconductor at room temperature.
    Baker WJ; Keevers TL; Lupton JM; McCamey DR; Boehme C
    Phys Rev Lett; 2012 Jun; 108(26):267601. PubMed ID: 23005015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triplet-to-singlet exciton formation in poly(p-phenylene-vinylene) light-emitting diodes.
    Lin LC; Meng HF; Shy JT; Horng SF; Yu LS; Chen CH; Liaw HH; Huang CC; Peng KY; Chen SA
    Phys Rev Lett; 2003 Jan; 90(3):036601. PubMed ID: 12570513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical Pumping of Poly(3-hexylthiophene) Singlet Excitons Induces Charge Carrier Generation.
    Tapping PC; Kee TW
    J Phys Chem Lett; 2014 Mar; 5(6):1040-7. PubMed ID: 26270985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exciton quenching in emitter blends for organic light emitting devices probed by electric field-dependent time-resolved luminescence.
    Kalinowski J; Mezyk J; Meinardi F; Tubino R; Cocchi M; Virgili D
    J Chem Phys; 2008 Mar; 128(12):124712. PubMed ID: 18376965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Organic Light-Emitting Diodes Using a Neutral π Radical as Emitter: The Emission from a Doublet.
    Peng Q; Obolda A; Zhang M; Li F
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7091-5. PubMed ID: 25916621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temperature effects on the scattering of polarons and bipolarons in organic conductors.
    Ribeiro Junior LA; da Cunha WF; Magela e Silva G
    J Phys Chem A; 2014 Aug; 118(32):6272-7. PubMed ID: 25076206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Femtosecond dynamics of electron localization at interfaces.
    Ge N; Wong CM; Lingle RL; McNeill JD; Gaffney KJ; Harris CB
    Science; 1998 Jan; 279(5348):202-5. PubMed ID: 9422687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Singlet and triplet exciton formation rates in conjugated polymer light-emitting diodes.
    Shuai Z; Beljonne D; Silbey RJ; Bredas JL
    Phys Rev Lett; 2000 Jan; 84(1):131-4. PubMed ID: 11015852
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced luminescence efficiency of Ag nanoparticles dispersed on indium tin oxide for polymer light-emitting diodes.
    Chen SH; Li YR; Yu CF; Lin CF; Kao PC
    Opt Express; 2013 Nov; 21(22):26236-43. PubMed ID: 24216848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-efficiency organic light-emitting diodes with fluorescent emitters.
    Nakanotani H; Higuchi T; Furukawa T; Masui K; Morimoto K; Numata M; Tanaka H; Sagara Y; Yasuda T; Adachi C
    Nat Commun; 2014 May; 5():4016. PubMed ID: 24874292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes.
    Shirasaki Y; Supran GJ; Tisdale WA; Bulović V
    Phys Rev Lett; 2013 May; 110(21):217403. PubMed ID: 23745932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy.
    Ohkita H; Cook S; Astuti Y; Duffy W; Tierney S; Zhang W; Heeney M; McCulloch I; Nelson J; Bradley DD; Durrant JR
    J Am Chem Soc; 2008 Mar; 130(10):3030-42. PubMed ID: 18278911
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions.
    Huang YS; Westenhoff S; Avilov I; Sreearunothai P; Hodgkiss JM; Deleener C; Friend RH; Beljonne D
    Nat Mater; 2008 Jun; 7(6):483-9. PubMed ID: 18438413
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Singlet-singlet exciton recombination: theoretical insight into the influence of high density regime of excitons in conjugated polymers.
    Ribeiro Junior LA; da Cunha WF; E Silva GM
    J Phys Chem B; 2014 May; 118(19):5250-7. PubMed ID: 24754540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Organic luminescent molecule with energetically equivalent singlet and triplet excited states for organic light-emitting diodes.
    Sato K; Shizu K; Yoshimura K; Kawada A; Miyazaki H; Adachi C
    Phys Rev Lett; 2013 Jun; 110(24):247401. PubMed ID: 25165959
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Photogeneration of Polaron Pairs in Neat Semicrystalline Donor-Acceptor Copolymer Films via Direct Excitation of Interchain Aggregates.
    Di Nuzzo D; Viola D; Fischer FS; Cerullo G; Ludwigs S; Da Como E
    J Phys Chem Lett; 2015 Apr; 6(7):1196-203. PubMed ID: 26262971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-Time Tracking of Singlet Exciton Diffusion in Organic Semiconductors.
    Kozlov OV; de Haan F; Kerner RA; Rand BP; Cheyns D; Pshenichnikov MS
    Phys Rev Lett; 2016 Feb; 116(5):057402. PubMed ID: 26894732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.