These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 12857259)

  • 21. Method of construction of composite one-dimensional photonic crystal with extended photonic band gaps.
    Tolmachev V; Perova T; Moore R
    Opt Express; 2005 Oct; 13(21):8433-41. PubMed ID: 19498873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polaritonic and photonic gap interactions in a two-dimensional photonic crystal.
    Rung A; Ribbing CG
    Phys Rev Lett; 2004 Mar; 92(12):123901. PubMed ID: 15089671
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs.
    Williamson IA; Mousavi SH; Wang Z
    Sci Rep; 2016 May; 6():25301. PubMed ID: 27143314
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Etched distributed Bragg reflectors as three-dimensional photonic crystals: photonic bands and density of states.
    Pavarini E; Andreani LC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036602. PubMed ID: 12366275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Broadband single-mode waveguiding in two- and three-dimensional hybrid photonic crystals based on silicon inverse opals.
    Qiu G; Vynck K; Cassagne D; Centeno E
    Opt Express; 2007 Mar; 15(6):3502-6. PubMed ID: 19532592
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight.
    Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mode softening, ferroelectric transition, and tunable photonic band structures in a point-dipole crystal.
    Klugkist JA; Mostovoy M; Knoester J
    Phys Rev Lett; 2006 Apr; 96(16):163903. PubMed ID: 16712232
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photonic amorphous diamond structure with a 3D photonic band gap.
    Edagawa K; Kanoko S; Notomi M
    Phys Rev Lett; 2008 Jan; 100(1):013901. PubMed ID: 18232763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible fabrication of three-dimensional optical-domain photonic crystals using a combination of single-laser-exposure diffractive-optics lithography and template inversion.
    Chanda D; Zachari N; Haque M; Ng ML; Herman PR
    Opt Lett; 2009 Dec; 34(24):3920-2. PubMed ID: 20016658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photonic band gap via quantum coherence in vortex lattices of Bose-Einstein condensates.
    Müstecaplioğlu OE; Oktel MO
    Phys Rev Lett; 2005 Jun; 94(22):220404. PubMed ID: 16090371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photonics of Template-Mediated Lattices of Colloidal Clusters.
    Morozov KI; Leshansky AM
    Langmuir; 2019 Mar; 35(11):3987-3991. PubMed ID: 30767537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.
    Lin Y; Rivera D; Chen KP
    Opt Express; 2006 Jan; 14(2):887-92. PubMed ID: 19503408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blueprint for wafer-scale three-dimensional photonic band-gap synthesis by photoelectrochemical etching.
    Chan TY; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046607. PubMed ID: 14683065
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Point defect geometries in inverted opal photonic crystals.
    Chan DL; Lidorikis E; Joannopoulos JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056602. PubMed ID: 16089663
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals.
    Liu H; Yao J; Xu D; Wang P
    Opt Express; 2007 Jan; 15(2):695-703. PubMed ID: 19532292
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Band-gap guidance in optically induced photonic lattices with a negative defect.
    Makasyuk I; Chen Z; Yang J
    Phys Rev Lett; 2006 Jun; 96(22):223903. PubMed ID: 16803308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of large absolute photonic bandgaps in two-dimensional plasma photonic crystal containing anisotropic material.
    Li Q; Xie K; Yuan D; Wei Z; Hu L; Mao Q; Jiang H; Hu Z; Wang E
    Appl Opt; 2016 Oct; 55(30):8541-8549. PubMed ID: 27828133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast.
    Chern RL; Chao SD
    Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional control of light in a two-dimensional photonic crystal slab.
    Chow E; Lin SY; Johnson SG; Villeneuve PR; Joannopoulos JD; Wendt JR; Vawter GA; Zubrzycki W; Hou H; Alleman A
    Nature; 2000 Oct; 407(6807):983-6. PubMed ID: 11069173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.