These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 12857318)

  • 21. Radial-tangential mode of single-wall carbon nanotubes manifested by Landau regulation: reinterpretation of low- and intermediate-frequency Raman signals.
    Hembram KPSS; Kim JG; Lee SG; Park J; Lee JK
    Sci Rep; 2023 Mar; 13(1):5012. PubMed ID: 36973343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Raman spectra of single walled carbon nanotubes at high temperatures: pretreating samples in a nitrogen atmosphere improves their thermal stability in air.
    Molina-Duarte J; Espinosa-Vega LI; Rodríguez AG; Guirado-López RA
    Phys Chem Chem Phys; 2017 Mar; 19(10):7215-7227. PubMed ID: 28233880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy.
    Joung SK; Okazaki T; Okada S; Iijima S
    Phys Chem Chem Phys; 2010 Jul; 12(28):8118-22. PubMed ID: 20526513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Raman frequency shift in oxygen-functionalized carbon nanotubes.
    Guo ZX; Ding JW; Xiao Y; Xing DY
    Nanotechnology; 2007 Nov; 18(46):465706. PubMed ID: 21730493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring the uniaxial strain of individual single-wall carbon nanotubes: resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes.
    Cronin SB; Swan AK; Unlü MS; Goldberg BB; Dresselhaus MS; Tinkham M
    Phys Rev Lett; 2004 Oct; 93(16):167401. PubMed ID: 15525030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Calculation of Raman parameters of real-size zigzag (n, 0) single-walled carbon nanotubes using finite-size models.
    Kupka T; Stachów M; Stobiński L; Kaminský J
    Phys Chem Chem Phys; 2016 Sep; 18(36):25058-25069. PubMed ID: 27711454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The intermediate frequency modes of single- and double-walled carbon nanotubes: a Raman spectroscopic and in situ Raman spectroelectrochemical study.
    Kalbac M; Kavan L; Zukalová M; Dunsch L
    Chemistry; 2006 May; 12(16):4451-7. PubMed ID: 16552794
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chirality distribution and transition energies of carbon nanotubes.
    Telg H; Maultzsch J; Reich S; Hennrich F; Thomsen C
    Phys Rev Lett; 2004 Oct; 93(17):177401. PubMed ID: 15525124
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption.
    Shim M; Ozel T; Gaur A; Wang C
    J Am Chem Soc; 2006 Jun; 128(23):7522-30. PubMed ID: 16756307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Research developments of Raman scattering of carbon nanotubes].
    Wang Y; Cao X; Lan G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Apr; 20(2):180-4. PubMed ID: 12953482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chiral interaction in double-wall carbon nanotubes: simple rules deduced from a large sampling of tubes.
    Vardanega D; Picaud F; Girardet C
    J Chem Phys; 2010 Mar; 132(12):124704. PubMed ID: 20370142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced photoluminescence from very thin double-wall carbon nanotubes synthesized by the zeolite-CCVD method.
    Kishi N; Kikuchi S; Ramesh P; Sugai T; Watanabe Y; Shinohara H
    J Phys Chem B; 2006 Dec; 110(49):24816-21. PubMed ID: 17149899
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chirality-dependent growth of single-wall carbon nanotubes as revealed inside nano-test tubes.
    Kharlamova MV; Kramberger C; Saito T; Sato Y; Suenaga K; Pichler T; Shiozawa H
    Nanoscale; 2017 Jun; 9(23):7998-8006. PubMed ID: 28574066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of intertube interactions in double- and triple-walled carbon nanotubes.
    Hirschmann TCh; Araujo PT; Muramatsu H; Rodriguez-Nieva JF; Seifert M; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2014 Feb; 8(2):1330-41. PubMed ID: 24456167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: environment and temperature effects.
    Fantini C; Jorio A; Souza M; Strano MS; Dresselhaus MS; Pimenta MA
    Phys Rev Lett; 2004 Oct; 93(14):147406. PubMed ID: 15524844
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-yield synthesis of single-wall carbon nanotubes on MCM41 using catalytic chemical vapor deposition of acetylene.
    Ramesh P; Kishi N; Sugai T; Shinohara H
    J Phys Chem B; 2006 Jan; 110(1):130-5. PubMed ID: 16471510
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoscale vibrational analysis of single-walled carbon nanotubes.
    Anderson N; Hartschuh A; Cronin S; Novotny L
    J Am Chem Soc; 2005 Mar; 127(8):2533-7. PubMed ID: 15725008
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature dependence of the Raman spectra of individual carbon nanotubes.
    Zhou Z; Dou X; Ci L; Song L; Liu D; Gao Y; Wang J; Liu L; Zhou W; Xie S; Wan D
    J Phys Chem B; 2006 Jan; 110(3):1206-9. PubMed ID: 16471665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman modes of index-identified freestanding single-walled carbon nanotubes.
    Meyer JC; Paillet M; Michel T; Moréac A; Neumann A; Duesberg GS; Roth S; Sauvajol JL
    Phys Rev Lett; 2005 Nov; 95(21):217401. PubMed ID: 16384181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electronic properties of propylamine-functionalized single-walled carbon nanotubes.
    Müller M; Meinke R; Maultzsch J; Syrgiannis Z; Hauke F; Pekker A; Kamarás K; Hirsch A; Thomsen C
    Chemphyschem; 2010 Aug; 11(11):2444-8. PubMed ID: 20589825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.