BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12858180)

  • 1. Modulation of glycine-activated ion channel function by G-protein betagamma subunits.
    Yevenes GE; Peoples RW; Tapia JC; Parodi J; Soto X; Olate J; Aguayo LG
    Nat Neurosci; 2003 Aug; 6(8):819-24. PubMed ID: 12858180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of glycine receptor chloride channels by cAMP-dependent protein kinase in spinal trigeminal neurons.
    Song YM; Huang LY
    Nature; 1990 Nov; 348(6298):242-5. PubMed ID: 2172840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two different modes of action of pentobarbital at glycine receptor channels.
    Mohammadi B; Krampfl K; Cetinkaya C; Wolfes H; Bufler J
    Eur J Pharmacol; 2004 Apr; 489(3):151-6. PubMed ID: 15087237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potentiation of the glycine-activated Cl- current by ethanol in cultured mouse spinal neurons.
    Aguayo LG; Tapia JC; Pancetti FC
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1116-22. PubMed ID: 8968332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of G proteins in the activity and ethanol modulation of glycine-induced currents in rat neurons freshly isolated from the ventral tegmental area.
    Zhu L; Ye JH
    Brain Res; 2005 Feb; 1033(1):102-8. PubMed ID: 15680345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular structure and function of the glycine receptor chloride channel.
    Lynch JW
    Physiol Rev; 2004 Oct; 84(4):1051-95. PubMed ID: 15383648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex.
    Clancy SM; Fowler CE; Finley M; Suen KF; Arrabit C; Berton F; Kosaza T; Casey PJ; Slesinger PA
    Mol Cell Neurosci; 2005 Feb; 28(2):375-89. PubMed ID: 15691717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycinergic transmission.
    Kirsch J
    Cell Tissue Res; 2006 Nov; 326(2):535-40. PubMed ID: 16807723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patch-clamp measurements of elementary chloride currents activated by the putative inhibitory transmitter GABA and glycine in mammalian spinal neurons.
    Sakmann B; Hamill OP; Bormann J
    J Neural Transm Suppl; 1983; 18():83-95. PubMed ID: 6308154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D2 dopamine receptor activation of potassium channels is selectively decoupled by Galpha-specific GoLoco motif peptides.
    Webb CK; McCudden CR; Willard FS; Kimple RJ; Siderovski DP; Oxford GS
    J Neurochem; 2005 Mar; 92(6):1408-18. PubMed ID: 15748159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glycine-gated chloride channels depress synaptic transmission in rat hippocampus.
    Song W; Chattipakorn SC; McMahon LL
    J Neurophysiol; 2006 Apr; 95(4):2366-79. PubMed ID: 16381810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quercetin subunit specifically reduces GlyR-mediated current in rat hippocampal neurons.
    Sun H; Cheng XP; You-Ye Z; Jiang P; Zhou JN
    Neuroscience; 2007 Aug; 148(2):548-59. PubMed ID: 17664043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a proposed mechanism of ligand-gated ion channel activation in the GABAA and glycine receptors.
    Kash TL; Kim T; Trudell JR; Harrison NL
    Neurosci Lett; 2004 Nov; 371(2-3):230-4. PubMed ID: 15519763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibitory neuronal glycine receptor.
    Béchade C; Sur C; Triller A
    Bioessays; 1994 Oct; 16(10):735-44. PubMed ID: 7980477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of association between activated Galpha q and Gbetagamma disrupts receptor-dependent and receptor-independent signaling.
    Evanko DS; Thiyagarajan MM; Takida S; Wedegaertner PB
    Cell Signal; 2005 Oct; 17(10):1218-28. PubMed ID: 16038796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional role of a C-terminal Gbetagamma-binding domain of Ca(v)2.2 channels.
    Li B; Zhong H; Scheuer T; Catterall WA
    Mol Pharmacol; 2004 Sep; 66(3):761-9. PubMed ID: 15322269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental regulation of beta-carboline-induced inhibition of glycine-evoked responses depends on glycine receptor beta subunit expression.
    Mangin JM; Nguyen L; Gougnard C; Hans G; Rogister B; Belachew S; Moonen G; Legendre P; Rigo JM
    Mol Pharmacol; 2005 May; 67(5):1783-96. PubMed ID: 15722459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity of Gbetagamma signaling depends on Galpha subunit coupling with G-protein-sensitive K(+) channels.
    Geng X; Du XN; Rusinova R; Liu BY; Li F; Zhang X; Chen XJ; Logothetis DE; Zhang HL
    Pharmacology; 2009; 84(2):82-90. PubMed ID: 19590257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous regulator of G-protein signaling proteins regulate the kinetics of Galphaq/11-mediated modulation of ion channels in central nervous system neurons.
    Clark MA; Lambert NA
    Mol Pharmacol; 2006 Apr; 69(4):1280-7. PubMed ID: 16368893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants for G protein betagamma modulation of ionotropic glycine receptors.
    Yevenes GE; Moraga-Cid G; Guzmán L; Haeger S; Oliveira L; Olate J; Schmalzing G; Aguayo LG
    J Biol Chem; 2006 Dec; 281(51):39300-7. PubMed ID: 17040914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.