BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 12859188)

  • 1. Recognition and resistance in TEM beta-lactamase.
    Wang X; Minasov G; Blázquez J; Caselli E; Prati F; Shoichet BK
    Biochemistry; 2003 Jul; 42(28):8434-44. PubMed ID: 12859188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structure of the Asn276Asp variant of the Escherichia coli TEM-1 beta-lactamase: direct observation of electrostatic modulation in resistance to inactivation by clavulanic acid.
    Swarén P; Golemi D; Cabantous S; Bulychev A; Maveyraud L; Mobashery S; Samama JP
    Biochemistry; 1999 Jul; 38(30):9570-6. PubMed ID: 10423234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X; Minasov G; Shoichet BK
    Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic cycle analysis and inhibitor design against beta-lactamase.
    Roth TA; Minasov G; Morandi S; Prati F; Shoichet BK
    Biochemistry; 2003 Dec; 42(49):14483-91. PubMed ID: 14661960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomolar inhibitors of AmpC beta-lactamase.
    Morandi F; Caselli E; Morandi S; Focia PJ; Blázquez J; Shoichet BK; Prati F
    J Am Chem Soc; 2003 Jan; 125(3):685-95. PubMed ID: 12526668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability.
    Chen Y; Delmas J; Sirot J; Shoichet B; Bonnet R
    J Mol Biol; 2005 Apr; 348(2):349-62. PubMed ID: 15811373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional structure of AmpC beta-lactamase from Escherichia coli bound to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design.
    Usher KC; Blaszczak LC; Weston GS; Shoichet BK; Remington SJ
    Biochemistry; 1998 Nov; 37(46):16082-92. PubMed ID: 9819201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases.
    Maveyraud L; Pratt RF; Samama JP
    Biochemistry; 1998 Feb; 37(8):2622-8. PubMed ID: 9485412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beta-secondary and solvent deuterium kinetic isotope effects on beta-lactamase catalysis.
    Adediran SA; Deraniyagala SA; Xu Y; Pratt RF
    Biochemistry; 1996 Mar; 35(11):3604-13. PubMed ID: 8639512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates.
    Nagarajan R; Pratt RF
    Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased folding stability of TEM-1 beta-lactamase by in vitro selection.
    Kather I; Jakob RP; Dobbek H; Schmid FX
    J Mol Biol; 2008 Oct; 383(1):238-51. PubMed ID: 18706424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into positive and negative requirements for protein-protein interactions by crystallographic analysis of the beta-lactamase inhibitory proteins BLIP, BLIP-I, and BLP.
    Gretes M; Lim DC; de Castro L; Jensen SE; Kang SG; Lee KJ; Strynadka NC
    J Mol Biol; 2009 Jun; 389(2):289-305. PubMed ID: 19332077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of PBP-A from Thermosynechococcus elongatus, a penicillin-binding protein closely related to class A beta-lactamases.
    Urbach C; Evrard C; Pudzaitis V; Fastrez J; Soumillion P; Declercq JP
    J Mol Biol; 2009 Feb; 386(1):109-20. PubMed ID: 19100272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion.
    Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H
    Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel inhibitor for prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis and details of substrate-recognition mechanism.
    Xu Y; Nakajima Y; Ito K; Zheng H; Oyama H; Heiser U; Hoffmann T; Gärtner UT; Demuth HU; Yoshimoto T
    J Mol Biol; 2008 Jan; 375(3):708-19. PubMed ID: 18042490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overcoming resistance to beta-lactamase inhibitors: comparing sulbactam to novel inhibitors against clavulanate resistant SHV enzymes with substitutions at Ambler position 244.
    Thomson JM; Distler AM; Bonomo RA
    Biochemistry; 2007 Oct; 46(40):11361-8. PubMed ID: 17848099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based design guides the improved efficacy of deacylation transition state analogue inhibitors of TEM-1 beta-Lactamase(,).
    Ness S; Martin R; Kindler AM; Paetzel M; Gold M; Jensen SE; Jones JB; Strynadka NC
    Biochemistry; 2000 May; 39(18):5312-21. PubMed ID: 10820001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics.
    Zawadzke LE; Chen CC; Banerjee S; Li Z; Wäsch S; Kapadia G; Moult J; Herzberg O
    Biochemistry; 1996 Dec; 35(51):16475-82. PubMed ID: 8987980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IRT and CMT beta-lactamases and inhibitor resistance.
    Cantón R; Morosini MI; de la Maza OM; de la Pedrosa EG
    Clin Microbiol Infect; 2008 Jan; 14 Suppl 1():53-62. PubMed ID: 18154528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanisms of resistance in Enterobacteriaceae towards beta-lactamase antibiotics].
    Susić E
    Acta Med Croatica; 2004; 58(4):307-12. PubMed ID: 15700687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.