These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 12859351)

  • 1. Human walking along a curved path. I. Body trajectory, segment orientation and the effect of vision.
    Courtine G; Schieppati M
    Eur J Neurosci; 2003 Jul; 18(1):177-90. PubMed ID: 12859351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head motion in humans alternating between straight and curved walking path: combination of stabilizing and anticipatory orienting mechanisms.
    Hicheur H; Vieilledent S; Berthoz A
    Neurosci Lett; 2005 Jul 22-29; 383(1-2):87-92. PubMed ID: 15936517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of a basic coordination pattern constructs straight-ahead and curved walking in humans.
    Courtine G; Schieppati M
    J Neurophysiol; 2004 Apr; 91(4):1524-35. PubMed ID: 14668296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of the body, head, and eyes during walking and turning.
    Imai T; Moore ST; Raphan T; Cohen B
    Exp Brain Res; 2001 Jan; 136(1):1-18. PubMed ID: 11204402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans.
    Courtine G; Papaxanthis C; Schieppati M
    Exp Brain Res; 2006 Apr; 170(3):320-35. PubMed ID: 16328271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of steering in the presence of unexpected head yaw movements. Influence on sequencing of subtasks.
    Vallis LA; Patla AE; Adkin AL
    Exp Brain Res; 2001 May; 138(1):128-34. PubMed ID: 11374079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human walking along a curved path. II. Gait features and EMG patterns.
    Courtine G; Schieppati M
    Eur J Neurosci; 2003 Jul; 18(1):191-205. PubMed ID: 12859352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks.
    Courtine G; Pozzo T
    Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Children use different anticipatory control strategies than adults to circumvent an obstacle in the travel path.
    Vallis LA; McFadyen BJ
    Exp Brain Res; 2005 Nov; 167(1):119-27. PubMed ID: 16177831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trunk muscle proprioceptive input assists steering of locomotion.
    Schmid M; De Nunzio AM; Schieppati M
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):127-32. PubMed ID: 15885899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion.
    Belmonti V; Cioni G; Berthoz A
    Exp Brain Res; 2013 May; 227(1):131-47. PubMed ID: 23588420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of head immobilization on the coordination and control of head and body reorientation and translation during steering.
    Hollands MA; Sorensen KL; Patla AE
    Exp Brain Res; 2001 Sep; 140(2):223-33. PubMed ID: 11521154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered steering strategies for goal-directed locomotion in stroke.
    Aburub AS; Lamontagne A
    J Neuroeng Rehabil; 2013 Jul; 10():80. PubMed ID: 23875969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eccentric eye and head positions in darkness induce deviation from the intended path.
    Jahn K; Kalla R; Karg S; Strupp M; Brandt T
    Exp Brain Res; 2006 Sep; 174(1):152-7. PubMed ID: 16604319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The predictive brain: anticipatory control of head direction for the steering of locomotion.
    Grasso R; Glasauer S; Takei Y; Berthoz A
    Neuroreport; 1996 Apr; 7(6):1170-4. PubMed ID: 8817526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Look where you're going!": gaze behaviour associated with maintaining and changing the direction of locomotion.
    Hollands MA; Patla AE; Vickers JN
    Exp Brain Res; 2002 Mar; 143(2):221-30. PubMed ID: 11880898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking along curved paths of different angles: the relationship between head and trunk turning.
    Sreenivasa MN; Frissen I; Souman JL; Ernst MO
    Exp Brain Res; 2008 Nov; 191(3):313-20. PubMed ID: 18688604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual afference mediates head and trunk stability in vestibular hypofunction.
    Wei SH; Chen PY; Chen HJ; Kao CL; Schubert MC
    J Clin Neurosci; 2016 Jul; 29():139-44. PubMed ID: 26976344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.