These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 12859684)

  • 101. Glucose transporter immunoreactivity in the hypothalamus and area postrema.
    Young JK; Wang C
    Brain Res Bull; 1990 Mar; 24(3):525-8. PubMed ID: 2337827
    [TBL] [Abstract][Full Text] [Related]  

  • 102. The Properties and Functions of Glial Cell Types of the Hypothalamic Median Eminence.
    Clayton RW; Lovell-Badge R; Galichet C
    Front Endocrinol (Lausanne); 2022; 13():953995. PubMed ID: 35966104
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Cell proliferation and glial cell marker expression in the wall of the third ventricle in the tuberal region of the male mouse hypothalamus during postnatal development.
    Coutteau-Robles A; Prevot V; Sharif A
    J Neuroendocrinol; 2023 Mar; 35(3):e13239. PubMed ID: 36863859
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Hypothalamic tanycytes: potential roles in the control of feeding and energy balance.
    Bolborea M; Dale N
    Trends Neurosci; 2013 Feb; 36(2):91-100. PubMed ID: 23332797
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting.
    Langlet F; Levin BE; Luquet S; Mazzone M; Messina A; Dunn-Meynell AA; Balland E; Lacombe A; Mazur D; Carmeliet P; Bouret SG; Prevot V; Dehouck B
    Cell Metab; 2013 Apr; 17(4):607-17. PubMed ID: 23562080
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Hypothalamic cell diversity: non-neuronal codes for long-distance volume transmission by neuropeptides.
    Alpár A; Benevento M; Romanov RA; Hökfelt T; Harkany T
    Curr Opin Neurobiol; 2019 Jun; 56():16-23. PubMed ID: 30471413
    [TBL] [Abstract][Full Text] [Related]  

  • 107. The rate-limiting step for glucose transport into the hypothalamus is across the blood-hypothalamus interface.
    Poitry-Yamate C; Lei H; Gruetter R
    J Neurochem; 2009 May; 109 Suppl 1(Suppl 1):38-45. PubMed ID: 19393007
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Ependymal secretion, especially in the hypothalamic region.
    Knowles F
    J Neurovisc Relat; 1969; 31():Suppl 9:97+. PubMed ID: 4990567
    [No Abstract]   [Full Text] [Related]  

  • 109. A Golgi study of third ventricle tanycytes in the adult rodent brain.
    Millhouse OE
    Z Zellforsch Mikrosk Anat; 1971; 121(1):1-13. PubMed ID: 5112429
    [No Abstract]   [Full Text] [Related]  

  • 110. Glucose transporters: structure, function and consequences of deficiency.
    Brown GK
    J Inherit Metab Dis; 2000 May; 23(3):237-46. PubMed ID: 10863940
    [TBL] [Abstract][Full Text] [Related]  

  • 111. Age related changes in the endocrine hypothalamus: I. Tanycytes and the blood-brain-cerebrospinal fluid barrier.
    Scott DE; Sladek JR
    Neurobiol Aging; 1981; 2(2):89-94. PubMed ID: 7301040
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Ontogeny of ependymoglial cells lining the third ventricle in mice.
    Lopez-Rodriguez D; Rohrbach A; Lanzillo M; Gervais M; Croizier S; Langlet F
    Front Endocrinol (Lausanne); 2022; 13():1073759. PubMed ID: 36686420
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Seasonal biology: Tanycytes give the hypothalamus a spring makeover.
    Rivagorda M; Prevot V; Schwaninger M
    Curr Biol; 2024 Mar; 34(5):R209-R211. PubMed ID: 38471452
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Hypothalamic sensing of circulating lactate regulates glucose production.
    Kokorovic A; Cheung GW; Rossetti L; Lam TK
    J Cell Mol Med; 2009; 13(11-12):4403-8. PubMed ID: 19040414
    [TBL] [Abstract][Full Text] [Related]  

  • 115. The role of sodium-coupled glucose co-transporter 3 in the satiety effect of portal glucose sensing.
    Delaere F; Duchampt A; Mounien L; Seyer P; Duraffourd C; Zitoun C; Thorens B; Mithieux G
    Mol Metab; 2012; 2(1):47-53. PubMed ID: 24024129
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Tanycytes: A rich morphological history to underpin future molecular and physiological investigations.
    Rodríguez E; Guerra M; Peruzzo B; Blázquez JL
    J Neuroendocrinol; 2019 Mar; 31(3):e12690. PubMed ID: 30697830
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Glucose-Sensing in the Reward System.
    Koekkoek LL; Mul JD; la Fleur SE
    Front Neurosci; 2017; 11():716. PubMed ID: 29311793
    [TBL] [Abstract][Full Text] [Related]  

  • 118. GLUT2, glucose and oxygen sensing in CD8
    Tong X
    Nat Metab; 2023 Nov; 5(11):1850-1851. PubMed ID: 37884693
    [No Abstract]   [Full Text] [Related]  

  • 119. Erratum. WASH Regulates Glucose Homeostasis by Facilitating Glut2 Receptor Recycling in Pancreatic β-Cells. Diabetes 2019;68:377-386.
    Ding L; Han L; Dube J; Billadeau DD
    Diabetes; 2020 May; 69(5):1083. PubMed ID: 32152205
    [No Abstract]   [Full Text] [Related]  

  • 120. Hypothalamic tanycytes: a key component of brain-endocrine interaction.
    Rodríguez EM; Blázquez JL; Pastor FE; Peláez B; Peña P; Peruzzo B; Amat P
    Int Rev Cytol; 2005; 247():89-164. PubMed ID: 16344112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.